Analisis Sentimen Ulasan Pengguna Aplikasi Alibaba.Com pada Google Playstore Menggunakan Naïve Bayes
Abstract
Alibaba.com, as one of the leading platforms, continues to strive to improve its services based on user feedback. One approach used is the collection of user reviews on the Google Play Store. To enhance service quality and user experience, sentiment analysis of these reviews becomes crucial. In this study, the Naive Bayes algorithm is applied to analyze the sentiment of the reviews with the aim of determining whether the sentiment is positive or negative. The data, consisting of reviews, was obtained through web scraping, resulting in 998 reviews that were processed through preprocessing stages. The dataset was then divided into training and testing data with a 60:40 ratio, where 599 reviews were manually labeled for training, and 399 reviews were used as test data. The Naive Bayes algorithm subsequently categorized the reviews as either positive or negative sentiment. An evaluation with a confusion matrix was then used to assess performance, this model showed an accuracy of 77.44%, precision of 83.39%, and recall of 85.16%. A total of 721 reviews were categorized as positive sentiment, while 277 reviews were categorized as negative sentiment. The main issues identified in the negative reviews included challenges related to language and payment. Additionally, there were complaints regarding online buying and selling fraud, which is a significant issue on this platform. Many users reported negative experiences related to transactions that did not match expectations, items that were not received, or products that did not match their descriptions. This highlights the importance of better verification and security systems to protect users from fraud. This study demonstrates that the Naive Bayes algorithm is quite efficient in analyzing user review sentiments on the Alibaba.com application.
Downloads
References
H. N. Utami and S. N. Wiyono, “Manfaat Yang Diharapkan Dari Model Perdagangan Digital Produk Pangan: Perspektif Pelaku Agribisnis,” J. Agristan, vol. 5, no. 1, pp. 61–73, 2023, doi: 10.37058/agristan.v5i1.6999.
J. Riyanto, “Analisa Sistem Aplikasi Marketplace Facebook Dalam Pengembangan Dunia Bisnis,” J. Media Inform. Budidarma, 2020, doi: 10.30865/mib.v4i4.2346.
Nursania Dasopang, “Jiemas E – Commerce Bisnis Dan Internet,” J. Ilm. Ekon. Manaj. dan Syariah JIEMAS, vol. 2, pp. 129–135, 2023, [Online]. Available: https://jiemas.stai-dq.org/index.php/home
N. Laila Wardani and J. Susyanti, “Analisis Pemanfaatan E-commerce Dalam Pengembangan Bisnis Pelaku Usaha Mikro, Kecil, dan Menengah (UMKM) di Era Revolusi 4.0 (Studi Kasus Pada UMKM di Kabupaten Malang),” J. Ilm. Manaj. Ekon. Dan Akunt., vol. 1, no. 4, pp. 268–275, 2024, [Online]. Available: https://doi.org/10.62017/jimea
Novan, “Pemanfaatan E-commerce dalam Meningkatkan Daya Saing UMKM,” J. Pengabdi. Mandiri, vol. 2, no. 2, pp. 639–648, 2023.
M. Iqbal and M. Ashry Sallatu, “Dampak Ekspansi Alibaba Group Terhadap Perkembangan E-Commerce Di Indonesia,” Hasanuddin J. Int. Aff., vol. 2, no. 1, pp. 2775–3336, 2022.
N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, 2022, doi: 10.57152/malcom.v2i1.195.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, pp. 65–71, 2022, doi: 10.37034/infeb.v4i3.146.
A. H. Hasugian, M. Fakhriza, and D. Zukhoiriyah, “Analisis Sentimen Pada Review Pengguna E-Commerce Menggunakan Algoritma Naïve Bayes,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 1, p. 98, 2023, doi: 10.53513/jsk.v6i1.7400.
A. M. Tanniewa, “Implementasi Algoritma Support Vector Learning Terhadap Analisis Sentimen Penggunaan Aplikasi Tiktok Shop Seller Center,” Pros. SISFOTEK, vol. 7, no. 1, pp. 165–170, 2023.
M. F. El Firdaus, N. Nurfaizah, and S. Sarmini, “Analisis Sentimen Tokopedia Pada Ulasan di Google Playstore Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1329, 2022, doi: 10.30865/jurikom.v9i5.4774.
D. A. Nugroho and F. N. Hasan, “Analisis Sentimen Kegiatan Pembersihan Sampah Pada Media Sosial X Menggunakan SVM dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 843, 2024, doi: 10.30865/mib.v8i2.7562.
F. N. H. Khairul Fadli, “Analisis Sentimen Terhadap Penutupan Tiktok Shop Dengan Metode Naive Bayes,” J. Media Inform. Budidarma, vol. 6, no. 3, pp. 407–416, 2024, doi: 10.47065/josh.v6i1.6060.
R. A. Syakura and Ade Davy Wiranata, “Analisis Sentimen Ulasan Kepuasan Pengguna Aplikasi Bsi Mobile Dengan Menggunakan Naïve Bayes Rais,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2024, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
A. Gaizka, A. R. Dzikrillah, and E. Sinduningrum, “Analisis Sentimen Masyarakat Sebelum Dan Sesudah Terpilihnya Gibran Sebagai Cawapres Prabowo Menggunakan Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, pp. 2830–2841, 2024, doi: 10.30865/klik.v4i6.1876.
D. Al Ghozi and F. N. Hasan, “Implementation of User Sentiment with Naïve Bayes Algorithm to Analyze LinkedIn Application Regarding Job Vacancies in the Play Store,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1647, 2024, doi: 10.30865/mib.v8i3.7879.
N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 47–58, 2021, doi: 10.28932/jutisi.v7i1.3216.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
M. I. Ahmadi, F. Apriani, M. Kurniasari, S. Handayani, and D. Gustian, “Sentiment Analysis Online Shop on the Play Store Using Method Support Vector Machine (Svm,” Semin. Nas. …, vol. 2020, no. Semnasif, pp. 196–203, 2020, [Online]. Available: http://jurnal.upnyk.ac.id/index.php/semnasif/article/view/4101
M. K. Amelia Ariska, “Deteksi Hate Speech pada Kolom Komentar Tiktok dengan menggunakan SVM,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2024, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
A. D. W. Akbar Cleary Syafi’i, “Analisis Sentimen Terhadap Rangka E-SAF Honda Pada Media Sosial X Dengan Algoritma Naïve Bayes Akbar,” Scientica, vol. 2, no. 1, pp. 126–138, 2024, doi: 10.30865/klik.v5i1.1993.
R. Sulistiawati and M. Kamayani, “Analis Sentimen Aplikasi Maskapai Penerbangan Lion Air Menggunakan Metode SVM dan Naïve Bayes,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2024, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Pengguna Aplikasi Alibaba.Com pada Google Playstore Menggunakan Naïve Bayes
Pages: 64-72
Copyright (c) 2024 Rafi Fadhlur Rahman, Faldy Irwiensyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).