Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi Traveloka Menggunakan Metode Naïve


  • Muchammad Gamma Al Hakim Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Faldy Irwiensyah * Mail Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Naive Bayes; App reviews; Traveloka; Text classification

Abstract

The proliferation of user-generated reviews on digital platforms provides in-depth information to improve services. The purpose of this study is to apply the Naïve Bayes approach to analyze the sentiment of user evaluations of the Traveloka application sourced from the Google Play Store. Through online search, 10,000 evaluations were collected. Case folding, stopword elimination, tokenizing, and stemming are some of the pre-processing techniques used. Based on the review scores, the sentiment data was classified into two groups: positive and negative. Furthermore, the Naïve Bayes model was used for classification, and a confusion matrix was used to assess the results. The results showed an accuracy of 89.35%, precision of 88.44%, recall of 95.05%, and F1-Score of 91.62%. These results demonstrate the effectiveness of the Naïve Bayes approach in categorizing user reviews, providing Traveloka with important information about customer perceptions and how to improve their service quality. The findings from this study are expected to be the basis for future advancements in sentiment analysis on travel and accommodation-related applications.

Downloads

Download data is not yet available.

References

J. Kasingku and A. H. F. Sanger, “Dunia Digital vs Dunia Rohani: Dilema Dalam Pertumbuhan Anak,” J. Educ. Res., vol. 4, no. 3, pp. 1325–1330, 2023, doi: 10.37985/jer.v4i3.476.

N. A. Cholid, “Pengaruh Customer Review, Rating, Dan Kualitas Pelayanan Terhadap Kepercayaan Pelanggan Pada Erigo Official Shop Di Platform Shopee (Studi Kasus Pada Mahasiswa STIESIA Surabaya),” J. Ilmu dan Ris. Manaj., vol. 12, no. 1, pp. 1–17, 2023.

M. Yani Balaka, J. Wiwin Kuswinardi, I. I. Dewa, A. Y. Wilyadewi, B. Efendi, and R. Zulfikhar, “Aplikasi mobile dalam pemasaran digital: analisis literatur tentang pengaruhnya terhadap keuangan dan strategi pemasaran bisnis,” J. Mob. dalam Pemasar. Digit., vol. 7, no. 3, pp. 21979–21988, 2023.

R. S. Jaya, I. N. Udayana, and P. D. Cahyani, “Pengaruh Social Influence Dan Personal Innovativeness Terhadap Perceived Usefulness Melalui Behavioral Intention Pengguna Traveloka (Studi Kasus: Pada Mahasiswa Ust Yogyakarta),” Bul. Ekon. Manajemen, Ekon. Pembangunan, Akunt., vol. 18, no. 1, p. 35, 2021, doi: 10.31315/be.v18i1.5622.

A. Fina, A. Rohmah, A. Crusma Fradani, and A. Indriani, “Pengaruh Electronic Word Of Mouth (E-WOM) Terhadap Keputusan Pembelian Pada Marketplace Tokopedia (Studi Pada Mahasiswa Pendidikan Ekonomi IKIP PGRI Bojonegoro),” J. Akunt. Keuang. dan Bisnis, vol. 1, no. 2, pp. 110–117, 2023, [Online]. Available: https://jurnal.ittc.web.id/index.php/jakbs/index

A. Y. Widowati and C. Budihartanti, “Analisis Kepuasan Pengguna Terhadap Aplikasi Traveloka Dengan Menerapkan Metode TAM (Technology Acceptance Model),” J. Prosisko, vol. 6, no. 2, pp. 109–116, 2019, [Online]. Available: https://e-jurnal.lppmunsera.org/index.php/PROSISKO/article/view/1629/1080

A. Prasetio and W. Nursandi, “Analisis Minat Pengguna Layanan Online Travel Agent (OTA) Pada Tiket.com di Indonesia Mengggunakan Model Pendekatan Modifikasi UTAUT 2,” J. Manaj. dan Keuang., vol. 11, no. 1, pp. 36–54, 2022, doi: 10.33059/jmk.v11i2.3432.

V. E. Sari, “Pengaruh E-Wom, Lifestyle, Kepercayaan Terhadap Keputusan Pembelian Ticket Online Booking Pada Situs Traveloka.Com Di Ponorogo (Studi Kasus Pembelian Tiket Pesawat Dan Kereta Api),” J. Adm. Bisnis Fisipol Unmul, vol. 7, no. 4, p. 474, 2019, doi: 10.54144/jadbis.v7i4.2863.

N. Viani, “Volume 1 Nomor 4 Tahun 2023 BISMA Business and Management Journal Pengaruh Digital Marketing, Electronic Word of Mouth dan Lifestyle terhadap Keputusan Pembelian pada Tiktok Shop Indonesia,” vol. 1, 2023.

R. A. Saputra et al., “Analisis Sentimen Aplikasi Tokocrypto Berdasarkan Ulasan Pada Google Play Store Menggunakan Metode Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 2028–2036, 2024, doi: 10.30865/klik.v4i4.1707.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.

A. Liza Marie and R. Eko Widodo, “Pengaruh Online Reviews Terhadap Online Hotel Booking Intentions, Study Kasus Pada Traveloka,” J. Ilm. Pariwisata, vol. 24, no. 3, pp. 194–207, 2019.

N. Safitri and C. Bella, “Penggunaan Algoritma Apriori Dalam Penerapan Data Mining Untuk Analisis Pola Pembelian Pelanggan (Studi Kasus: Toko Diengva Bandar Jaya),” J. Portaldata, vol. 2, no. 1, pp. 1–8, 2022, [Online]. Available: http://portaldata.org/index.php/portaldata/article/view/72/72

K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

M. Y. Siregar, A. Davy Wiranata, and R. A. Saputra, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Pada Ulasan Pengguna Aplikasi Streaming Vidio Menggunakan Metode Naïve Bayes,” Media Online, vol. 4, no. 5, pp. 2419–2429, 2024, doi: 10.30865/klik.v4i5.1787.

A. Simanungkalit, J. P. P. Naibaho, and A. De Kweldju, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 659, 2024, doi: 10.35889/jutisi.v13i1.1826.

D. Nurwahidah, G. Dwilestari, N. Dienwati Nuris, and R. Narasati, “Analisis Sentimen Data Ulasan Pengguna Aplikasi Google Kelas Pada Google Play Store Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3673–3678, 2024, doi: 10.36040/jati.v7i6.8245.

N. Wijaya and E. S. Panjaitan, “Analisis Sentimen Ulasan Aplikasi Instagram di Google Play Store : Pendekatan Multinomial Naive Bayes dan Berbasis Leksikon,” vol. 6, no. 2, pp. 921–929, 2024, doi: 10.47065/bits.v6i2.5615.

N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.

Fajar Sidik, Ibnu Suhada, Azhar Haikal Anwar, and Firman Noor Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring dengan Algoritma Naïve Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, pp. 34–43, 2022.

N. S. Fauziah and R. D. Dana, “Implementasi Algoritma Naive bayes dalam Klasifikasi Status Kesejahteraan Masyarakat Desa Gunungsari,” Blend Sains J. Tek., vol. 1, no. 4, pp. 295–305, 2023, doi: 10.56211/blendsains.v1i4.234.

I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” vol. 4, pp. 296–301, 2022, doi: 10.30865/json.v4i2.5381.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi Traveloka Menggunakan Metode Naïve

Dimensions Badge
Article History
Submitted: 2024-10-23
Published: 2024-12-03
Abstract View: 62 times
PDF Download: 48 times
How to Cite
Al Hakim, M. G., & Irwiensyah, F. (2024). Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi Traveloka Menggunakan Metode Naïve. Building of Informatics, Technology and Science (BITS), 6(3), 1448-1456. https://doi.org/10.47065/bits.v6i3.6119
Issue
Section
Articles