Analisis Kepuasan Masyarakat terhadap Pelayanan Publik menggunakan K-Means Clustering
Abstract
This study aims to analyze data clustering using the K-Means Clustering method in order to understand certain patterns contained in public satisfaction data on public services. The problem of this study focuses on how to optimally group data to evaluate the quality of service indicators based on 9 indicators in the Public Satisfaction Survey (SKM). The purpose of this study is to divide data into several clusters so that it can provide a clear picture of the differences in quality between service groups. The method used in this study is the K-Means Clustering method, which consists of several stages, namely determining the number of clusters, determining the initial center point, calculating the distance of data to the center point, grouping data, updating the center point, and providing cluster labels. Evaluation of the quality of clustering results is carried out using two evaluation metrics, namely the Silhouette Score and the Davies-Bouldin Index. The results showed that the data was divided into two clusters with a Silhouette Score value of 0.515 which indicated a fairly good clustering quality. In addition, the Davies-Bouldin Index value of 0.784 indicates that the clusters formed have a fairly good distance between each other. The results of this analysis provide an overview that the first cluster has a higher quality of service compared to the second cluster based on the average value of the service indicators measured. This study is useful in providing more structured and accurate information regarding service quality, so that it can be a basis for policy makers to improve service performance in the future. In addition, this study can also be a reference for further research in the application of the K-Means method for similar cases with a focus on evaluation and development of public services.
Downloads
References
S. Oop Sofiyah, N. R., dan R. Danar Dana, “Analisis Efektivitas Pelayanan Publik Menggunakan K-Means Clustering Di Kecamatan Sukagumiwang,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, hal. 1291–1296, 2023, doi: 10.36040/jati.v7i2.6536.
L. Winda Sari Siburian, D. Saripurna, dan S. Kusnasari, “Analisis Tingkat Kepuasan Masyarakat Terhadap Pelayanan Kantor Desa Dengan Menggunakan Algoritma C4.5,” J. Sist. Inf. …, vol. 3, no. 2, hal. 263–273, 2024, [Daring]. Tersedia pada: https://ojs.trigunadharma.ac.id/index.php/jsi
DEWAN PERWAKILAN RAKYAT REPUBLIK INDONESIA, Undang-Undang Republik Indonesia Nomor 25 Tahun 2009, no. PELAYANAN PUBLIK. hal. 49–56.
I. N. Sulistyo dan Sotya Partiwi Ediwijoyo, “Analisis Kepuasan Masyarakat Terhadap Pelayanan Publik Berdasarkan Indeks Kepuasan Masyarakat di Kantor Kecamatan Ayah Kabupaten Kebumen,” J. E-Bis, vol. 4, no. 2, hal. 276–286, 2020, doi: 10.37339/e-bis.v4i2.386.
A. Izudin, “Kepuasan masyarakat terhadap pelayanan publik dalam mewujudkan good governance di Kecamatan Umbulharjo Kota Yogyakarta,” Publisia J. Ilmu Adm. Publik, vol. 4, no. 1, 2019, doi: 10.26905/pjiap.v4i1.2199.
L. D. Damayanti, K. R. Suwena, dan I. A. Haris, “Analisis Kepuasan Masyarakat Terhadap Pelayanan Publik Berdasarkan Indeks Kepuasan Masyarakat (Ikm) Pada Puskesmas …,” vol. 11, no. 1, hal. 21–32, 2023, [Daring]. Tersedia pada: http://repository.unived.ac.id/1401/%0Ahttp://repository.unived.ac.id/1401/1/DESMANTO.pdf
R. Ananda, R. Damayanti, dan R. Maharja, “Tingkat Kepuasan Masyarakat terhadap Kinerja Pelayanan Kesehatan,” J. Keperawatan Prof., vol. 4, no. 1, hal. 9–17, 2023, doi: 10.36590/kepo.v4i1.570.
W. A. Setyarini, “Survei Kepuasan Masyarakat terhadap Pelayanan Pengaduan Masyarakat Lapor Hendi Tahun 2021,” J. Riptek, vol. 16, no. 2, hal. 90–96, 2022, doi: 10.35475/riptek.v16i2.157.
MENTERI PENDAYAGUNAAN APARATUR NEGARA, Peraturan Menteri Pendayagunaan Aparatur Negara Dan Reformasi Birokrasi Republik Indonesia Nomor 14 Tahun 2017 Tentang Pedoman Penyusunan Survei Kepuasan Masyarakat Unit Penyelenggara Pelayanan Publik, vol. 94, no. 2. 2017, hal. 459–464. doi: 10.1016/0014-4827(75)90518-2.
B. Setiawati, “Analisis Tingkat Kepuasan Masyarakat terhadap Kinerja Pelayanan Kepolisian Resort Balangan,” J. PubBis, vol. 06, no. 01, hal. 74–85, 2022, doi: 10.35722/pubbis.v6i1.583.
A. N. Dewanti dan K. T. Lutfhiani, “Analisis Tingkat Kepuasan Masyarakat terhadap Pelayanan Air Bersih di Kecamatan Sepaku Kabupaten Penajam Paser Utara,” Compact Spat. Dev. J., vol. 1, no. 1, hal. 16–23, 2022, doi: 10.35718/compact.v1i1.734.
U. Burelia, G. Urva, dan A. Sellyana, “Mengukur Tingkat Kepuasan Masyarakat Pada Pelayanan Kepolisian Resor(Polres) Dumai Menggunakan Algoritma K-Means Clustering,” Jutekinf (Jurnal Teknol. Komput. Dan Informasi), vol. 10, no. 1, hal. 12–18, 2022, doi: 10.52072/jutekinf.v10i1.354.
B. Parlambang dan Fauziah, “Implementasi Algoritma K-Means Dalam Proses Penilaian Kuesioner Kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 2, hal. 161–173, 2020, doi: 10.35760/tr.2020.v25i2.2719.
N. Rahmawati, R. Buaton, dan I. Ambarita, “Klasifikasi Tingkat Kepuasan Masyarakat Penggunaan BPJS Kesehatan di Kota Binjai Menggunakan K-Means Clustering,” J. Sains dan Teknol. Inf., vol. 2, no. 4, hal. 86–98, 2024.
E. Patimah, E. Ermatita, dan N. Chamidah, Analisis Cluster Kepuasan Pengguna Terhadap Layanan Shopee Menggunakan Algoritma K-Means, vol. 17, no. 3. 2021. doi: 10.52958/iftk.v17i3.3654.
E. H. Wisanta dan Y. N. Marlim, “Analisis Algoritma K-Means Untuk Clustering Kepuasan Pelayanan: Mall Pelayanan Publik Pekanbaru,” Semin. Nas. Inform. Pros. Senat. 2021, hal. 223–228, 2021.
K. S. H. Kusuma Al Atros, A. R. Padri, O. Nurdiawan, A. Faqih, dan S. Anwar, “Model Klasifikasi Analisis Kepuasan Pengguna Perpustakaan Online Menggunakan K-Means dan Decission Tree,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, hal. 323, 2021, doi: 10.30865/jurikom.v8i6.3680.
H. P. Kurniawan dan L. Farhatuaini, “Identifikasi Pola Kepuasan Mahasiswa Terhadap Proses Pembelajaran Menggunakan Algoritma K-Means Clustering.,” J. Inform. J. Pengemb. IT, vol. 9, no. 2, hal. 164–172, 2024, doi: 10.30591/jpit.v9i2.6740.
R. Adniana, D. Solihudin, dan R. Narasati, “Optimasi Analisis Data Kepuasan Pelanggan Cv Mega Baja Bintaro Dengan Penerapan Algoritma X-Means Clustering,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, hal. 445–453, 2024, doi: 10.36040/jati.v8i1.8722.
S. Dewi dan M. A. I. Pakereng, “Implementasi Principal Component Analysis Pada K-Means Untuk Klasterisasi Tingkat Pendidikan Penduduk Kabupaten Semarang,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, hal. 1186–1195, 2023, doi: 10.29100/jipi.v8i4.4101.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Kepuasan Masyarakat terhadap Pelayanan Publik menggunakan K-Means Clustering
Pages: 1067-1076
Copyright (c) 2025 Yenik Hariyanto, Ardhin Primadewi, Mukhtar Hanafi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).