Penerapan Metode Naive Bayes Dalam Rekomendasi Strategi Penerimaan Peserta Didik Baru


  • Afan Hafara Sani Universitas Muhammadiyah Magelang, Magelang, Indonesia
  • Agus Setiawan Universitas Muhammadiyah Magelang, Magelang, Indonesia
  • Ardhin Primadewi * Mail Universitas Muhammadiyah Magelang, Magelang, Indonesia
  • (*) Corresponding Author
Keywords: Naive Bayes; Recommendation; Strategy; PPDB; Student Admission

Abstract

New Student Admission (PPDB) is a school spearheading activity in getting students, especially for private schools. SMK Muhammadiyah 1 Borobudur as one of the private vocational schools in Magelang Regency. SMK Muhammadiyah 1 Borobudur has problems related to the PPDB promotion strategy. The PPDB promotion that has been carried out has not fully shown a significant promotion growth to increase the number of students registering each year and PPDB information has not yet reached remote areas of Magelang Regency. In determining the promotion media for PPDB SMK Muhammadiyah 1 Borobudur, this study uses the Naïve Bayes algorithm. Naïve Bayes is a classification method using probability and statistics to predict future opportunities based on the past. By using the nave Bayes algorithm which is applied with a ratio of 70:30 for train data and test data, it is able to produce an accuracy of 72%. To maximize the results of data accuracy, this study used the k-fold cross-validation method with k=10 times resulting in an accuracy of 75%. In addition, it can be seen that 3 PPDB information is recommended for promotional media, namely student partners, alumni and Instagram.

Downloads

Download data is not yet available.

Author Biographies

Afan Hafara Sani, Universitas Muhammadiyah Magelang, Magelang

Teknik Informatika

Agus Setiawan, Universitas Muhammadiyah Magelang, Magelang

Teknik Informatika

References

A. Saputro and A. Primadewi, “Implementation of the Code Igniter Framework in the Online New Student Admission Application at SMK Muhammadiyah 2 Mertoyudan Magelang,” Urecol Journal. Part E Eng., vol. 2, no. 1, pp. 37–46, 2022.

S. Eka et al., “PENERAPAN MODEL NAIVE BAYES UNTUK MEMPREDIKSI POTENSI PENDAFTARAN SISWA DI SMK TAMAN SISWA TELUK BETUNG BERBASIS WEB,” J. Eng. Comput. Sci. Inf. Technol., vol. 1, no. 1, pp. 82–87, 2021.

Reflianto and Syamsuar, “Pendidikan dan Tantangan Pembelajaran Berbasis Teknologi Informasi di Era Revolusi Industri 4.0,” J. Ilm. Teknol. Pendidik., vol. 6, no. 2, pp. 1–13, 2018.

D. J. Lubis and A. I. Ningtiyas, “Penerapan Metode Naïve Bayes Untuk Rekomendasi Pemilihan Asisten Laboratorium Komputer Di Perguruan Tinggi,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 12, no. 2, pp. 127–138, 2022.

F. Farid, U. Enri, and Y. Umaidah, “Sistem Pendukung Keputusan Rekomendasi Topik Skripsi Menggunakan Naïve Bayes Classifier,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 1, p. 35, 2021.

D. R. Utami, A. Kurniawan, and U. Enri, “Naïve Bayes Klasifikasi untuk Rekomendasi Strategi Promosi Tindakan pada Aesthetic Dental Clinic Karawang,” J-SAKTI (Jurnal Sains Komput. Inform., vol. 5, no. September, pp. 601–610, 2021.

A. H. Mirza, “Application of Naive Bayes Classifier Algorithm in Determining New Student Admission Promotion Strategies,” J. Inf. Syst. Informatics, vol. 1, no. 1, pp. 14–28, 2019.

I. Loelianto, M. S. S. Thayf, and H. Angriani, “Implementasi Teori Naive Bayes Dalam Klasifikasi Calon Mahasiswa Baru Stmik Kharisma Makassar,” SINTECH (Science Inf. Technol. J., vol. 3, no. 2, pp. 110–117, 2020.

Budiman and Z. Niqotaini, “Analisis Perbandingan Kinerja Algoritma Klasifikasi Data Mining Penelusuran Minat Calon Mahasiswa,” Sist. J. Sist. Inf., vol. 11, pp. 271–290, 2022.

A. Senika, R. Rasiban, and D. Iskandar, “Implementasi Metode Naïve Bayes Dalam Penilaian Kinerja Sales Marketing Pada PT. Pachira Distrinusa,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 701, 2022.

I. Riswanto and R. H. Laluma, “Klasifikasi Kelayakan Pinjaman Pada Koperasi Karyawan Menggunakan Metode Naïve Bayes Classifier Berbasis Web,” Infotronik J. Teknol. Inf. dan Elektron., vol. 5, no. 1, pp. 11–16, 2020.

R. H. Sukarna and Y. Ansori, “Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. Ilm. Sains dan Teknol., vol. 6, no. 1, pp. 50–61, 2022.

D. Wahyudi, A. H. Mirza, and P. H. Merrieayu, “Implementasi Data Mining Dengan Naive Bayes Classifier Untuk Mendukung Strategi Promosi (Studi Kasus Universitas Bina Darma Palembang),” Univ. Bina Darma Palembang, vol. 1, no. 1, 2017.

Vianti Widyasari and Arief Senja Fitrani, “Application of Data Mining with Classification Methods for Promotion of New Student Admissions at Muhammadiyah University of Sidoarjo Using Web-Based Naïve Bayes Algorithm,” Procedia Eng. Life Sci., vol. 1, no. 2, 2021.

A. Carol, “Penerapan Naive Bayesian Classifier Dalam Penyeleksian Beasiswa PPA,” J. Comput. Syst. Informatics, vol. 2, no. 2, pp. 194–198, 2021.

S. Wulandari, W. Saputra, S. Tunas Bangsa Pematangsiantar, and A. A. Tunas Bangsa Pematangsiantar JlJenderal Sudirman Blok No, “Penerapan Metode Naive Bayes dalam Menentukan Pengaruh Penasihat Akademik pada Kelulusan Mahasiswa Tingkat Akhir,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, pp. 661–669, 2019.

P. A. Winata, “Klasifikasi Naive Bayes Keparahan Trauma Pasien Menggunakan Data Neuro Cognitive Dan Data Physiologic Dengan Python,” eminar Nas. Mat. Geom. Stat. dan Komputas, pp. 99–109, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Naive Bayes Dalam Rekomendasi Strategi Penerimaan Peserta Didik Baru

Dimensions Badge
Article History
Submitted: 2022-10-29
Published: 2022-12-10
Abstract View: 502 times
PDF Download: 778 times
Section
Articles