Implementasi Metode K-Medoids Dalam Pengelompokan Kepuasan Masyarakat Terhadap Pelayanan Rumah Sakit
Abstract
Service is an effort made to meet customer's direct needs with the aim of helping their needs. One of the institutions that provides services in the health sector is a hospital. The public satisfaction survey aims to assess the level of public satisfaction with service quality to improve it. Assessment of public satisfaction with service quality can vary. With these diverse survey results, a system is needed that supports grouping public satisfaction with services. In this research, the K-Medoids method is used to classify public satisfaction with services. The variables used for grouping consist of service requirements, service procedure systems and mechanisms, service time, costs/tariffs, product specifications, types of service, competence of implementers, behavior of implementers, quality of facilities and infrastructure, and complaint handling. This research resulted in different categories, such as very good, good, poor and not good. The criteria for measuring the results of K-Medoids using the Silhouette Coefficient from the results of 26 experimental data obtained the best evaluation results with a value range of 0.9 – 1.00 which is included in the criteria for a strong structure with total cluster of 4. The results of 400 data that have been implemented into the web-based system on the 26 experimental data described above, from the results of each cluster for each iteration it can be concluded that the community's satisfaction with the services at RSUD Dr. Soedarso Pontianak, from the sum of the results of 9.365 cluster members from all iterations, is in cluster 4 with the very good category.
Downloads
References
I. Zulvia, F. A. Hidayatulloh, dan E. Rahmawati, “Analisis Kepuasan Pasien Terhadap Pelayanan Kesehatan di Klinik Alkindi Herbal Menggunakan Metode K-Means Clustering,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, hal. 261, 2022, doi: 10.26798/jiko.v6i2.612.
A. D. C. Aqil, “Studi Kepustakaan Mengenai Kualitas Pelayanan Terhadap Kepuasan Pasien Rawat Jalan Di Rumah Sakit,” J. Ilm. Pamenang, vol. 2, no. 2, hal. 1–6, 2020, doi: 10.53599/jip.v2i2.58.
D. Muhammad, Almasyhuri, dan L. A. Setiani, “Evaluation of the Level of Patient Satisfaction with Pharmaceutical Services at Sekarwangi Cibadak Hospital, Sukabumi Regency.,” J. Ilm. Ilmu Terap. Univ. Jambi, vol. 4, no. 2, hal. 174–186, 2020, doi: 10.22437/jiituj.v4i2.11606.
Y. Soumokil, M. Syafar, dan A. Yusuf, “Analisis Kepuasan Pasien Di Rumah Sakit Umum Daerah Piru,” J. Ilm. Kesehat. Sandi Husada, vol. 10, no. 2, hal. 543–551, 2021, doi: 10.35816/jiskh.v10i2.645.
M. Abdur Rofik, A. Mutoi Siregar, dan D. Sulistya Kusumaningrum, “Perbandingan Tingkat Kepuasan Siswa Terhadap Pelayanan Sekolah Menggunakan Algoritma K-Means Dan K-Medoids,” vol. II, no. 1, 2021.
A. D. Andini dan T. Arifin, “Implementasi Algoritma K-Medoids Untuk Klasterisasi Data Penyakit Pasien Di Rsud Kota Bandung,” J. Responsif Ris. Sains dan Inform., vol. 2, no. 2, hal. 128–138, 2020, doi: 10.51977/jti.v2i2.247.
C. -, E. Claudyo, L. -, H. K. Manullang, dan A. I. Zebua, “Analisis Pelayanan Rumah Sakit Umum Dengan Perbandingan Antara Metode Algoritma Kmeans, Dan K-Medoids Clustering,” J. Teknol. Dan Ilmu Komput. Prima, vol. 6, no. 2, hal. 106–111, 2023, doi: 10.34012/jutikomp.v6i2.4145.
K. Fadilah, Alia;Primajaya, Aji;Prihandani, “Pengelompokan Kabupaten atau Kota di Indonesia Berdasarkan Pelayanan Kesehatan Maternal dengan Algoritma K-Medoids,” vol. 8, no. July, hal. 252–265, 2022.
B. Irawan, R. A. Kurnia, E. Daniel, S. Achmady, dan M. Sembiring, “Pelayanan Rumah Sakit Berdasarkan Metode Service Quality ( Servqual ),” Jkf, vol. 3, no. 1, hal. 58–64, 2020.
M. Sholeh dan K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, hal. 56, 2023, doi: 10.30998/string.v8i1.16388.
F. Ramadhan, Y. H. Chrisnanto, dan A. K. Ningsih, “Sistem Segmentasi Keluhan Pelanggan di Perumda Air Minum Tirta Raharja Cimahi Menggunakan Metode K-Medoids,” Informatics Digit. Expert, vol. 3, no. 1, hal. 6–9, 2021, doi: 10.36423/index.v3i1.674.
S. Bahri dan D. M. Midyanti, “Penerapan Metode K-Medoids untuk Pengelompokan Mahasiswa Berpotensi Drop Out,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 1, hal. 165–172, 2023, doi: 10.25126/jtiik.20231016643.
H. Jiawei dan M. Kamber, Data Mining : Concept and Techniques Second Edition. Morgan Kaufmann, 2006.
S. Darma dan G. W. Nurcahyo, “Klasterisasi Teknik Promosi dalam Meningkatkan Mutu Kampus Menggunakan Algoritma K-Medoids,” J. Inform. Ekon. Bisnis, vol. 3, hal. 89–94, 2021, doi: 10.37034/infeb.v3i3.87.
R. N. Ibrahim, M. N. Hayati, dan F. D. . Amijaya, “Penerapan Algoritma K-Medoids pada Pengelompokan Wilayah Desa atau Kelurahan di Kabupaten Kutai Kartanegara,” J. EKSPONENSIAL, vol. 11, hal. 153–158, 2020, [Daring]. Tersedia pada: http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/658
S. Paembonan dan H. Abduh, “Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat,” PENA Tek. J. Ilm. Ilmu-Ilmu Tek., vol. 6, no. 2, hal. 48, 2021, doi: 10.51557/pt_jiit.v6i2.659.
R. H. Sachrrial dan A. Iskandar, “Analisa Perbandingan Complate Linkage AHC dan K-Medoids Dalam Pengelompokkan Data Kemiskinan di Indonesia,” Build. Informatics, Technol. Sci., vol. 5, no. 2, 2023, doi: 10.47065/bits.v5i2.4310.
E. Buulolo, Data Mining Untuk Perguruan Tinggi - Efori Buulolo - Google Buku. Yogyakarta: Yogyakarta : CV. Budi Utama, 2020.
N. Mirantika, T. S. Syamfithriani, dan R. Trisudarmo, “Implementasi Algoritma K-Medoids Clustering Untuk Menentukan Segmentasi Pelanggan,” J. Nuansa Inform., vol. 17, no. 1, hal. 2614–5405, 2023, [Daring]. Tersedia pada: https://journal.uniku.ac.id/index.php/ilkom
N. Bunafit, PHP dan MySQL dengan Editor Dreamweaver MX. Yogyakarta: Andi, 2004.
S. Sundari, I. S. Damanik, A. P. Windarto, H. S. Tambunan, J. Jalaluddin, dan A. Wanto, “Analisis K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, hal. 687, 2019, doi: 10.30645/senaris.v1i0.75.
D. A. I. . Dewi dan D. A. . Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, hal. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.
B. Wira, A. E. Budianto, dan A. S. Wiguna, “Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi,” J. Terap. Sains Teknol., vol. 1, no. 3, hal. 54–69, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Metode K-Medoids Dalam Pengelompokan Kepuasan Masyarakat Terhadap Pelayanan Rumah Sakit
Pages: 1006-1017
Copyright (c) 2024 Tri Handayani, Syamsul Bahri, Kasliono Kasliono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).