Prediksi Jumlah Perceraian Menggunakan Metode Support Vector Regression (SVR)
Abstract
The increasing number of divorces poses an increasingly significant social challenge in Indonesia, including in the city of Pekanbaru. The impact of these divorces on the adolescent population can have negative effects on their emotional and psychological well-being, as well as their ability to interact socially and engage in the learning process. This study utilizes monthly divorce data from 2015 to April 2023 to conduct time series analysis and applies the Support Vector Regression (SVR) method to predict the number of divorces in the city of Pekanbaru. Three types of SVR kernels, namely linear, polynomial, and radial basis function (RBF), are evaluated and compared to find the kernel with the best Mean Squared Error (MSE) results. Through grid search analysis, optimal parameter values for each kernel are determined. The test results indicate that the SVR model with a polynomial kernel provides more accurate predictions with an MSE of 0.010228, compared to the linear kernel (MSE = 0.012767) and the RBF kernel (MSE = 0.010812).
Downloads
References
F. Jenz and N. C. Apsari, “Dampak Perceraian Orang Tua Pada Prestasi Anak Remaja,” J. Penelit. dan Pengabdi. Kpd. Masy., vol. 2, no. 1, p. 1, 2021, doi: 10.24198/jppm.v2i1.33430.
C. M. Annur, “Kasus Perceraian Meningkat 53%, Mayoritas karena Pertengkaran,” www.katadata.co.id, 2022. https://databoks.katadata.co.id/datapublish/2022/02/28/kasus-perceraian-meningkat-53-mayoritas-karena-pertengkaran (accessed Nov. 30, 2023).
Direktori Putusan Mahkamah Agung Republik Indonesia, “PUTUSAN UPLOAD PER TAHUN PA PEKANBARU PERCERAIAN,” 2022. https://putusan3.mahkamahagung.go.id/direktori/periode/tahunjenis/upload/pengadilan/pa-pekanbaru/kategori/perceraian.html (accessed Nov. 30, 2023).
N. P. R. Apriyanti, I. K. G. D. Putra, and I. M. S. Putra, “Peramalan Jumlah Kecelakaan Lalu Lintas Menggunakan Metode Support Vector Regression,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 2, p. 72, 2020, doi: 10.24843/jim.2020.v08.i02.p01.
A. K. Dewi, M. T. Furqon, and R. C. Wihandika, “Prediksi Laju Pertumbuhan Penduduk Menggunakan Metode Support Vector Regression (Studi Kasus: Kota Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 1, pp. 421–427, 2020, [Online]. Available: http://j-ptiik.ub.ac.id
R. A. Samosir, M. F. Rozy, and A. P. Windarto, “Penerapan Algoritma Regresi Linier Berganda dalam Mengestimasi Jumlah Perceraian di Pengadilan Agama Simalungun,” TIN Terap. Inform. Nusant., vol. 2, no. 1, pp. 16–20, 2021, [Online]. Available: https://ejurnal.seminar-id.com/index.php/tin
A. P. Desvina, “Pemodelan Vector Autoregressive (Var) untuk Data Jumlah Perceraian di Kota Pekanbaru,” J. Sains Mat. dan Stat., vol. 7, no. 2, pp. 97–107, 2021, doi: 10.24014/jsms.v7i2.13765.
R. et all Yulistiani, “Metode Regresi Linier Berganda dan SVR dalam Menentukan Tingkat Pengaruh Cuaca Terhadap Produktivitas Padi di Indonesia,” Semin. Nas. Inform. Sist. Inf. Dan Keamanan Siber, no. 2017, pp. 29–34, 2018.
R. A. Putri, W. S. Winahju, and M. Mashuri, “Penerapan Metode Ridge Regression dan Support Vector Regression (SVR) untuk Prediksi Indeks Batubara di PT XYZ,” J. Sains dan Seni ITS, vol. 9, no. 1, pp. 64–71, 2020, doi: 10.12962/j23373520.v9i1.51021.
A. Kurniawati and A. Arima, “Analisis Prediksi Harga Saham PT. Astra International Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) dan Support Vector Regression (SVR),” J. Ilm. Komputasi, vol. 20, no. 3, pp. 417–423, 2021, doi: 10.32409/jikstik.20.3.2732.
O. Bonita, “Prediksi Harga Batu Bara Menggunakan Support Vector Regression ( SVR ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6603–6609, 2018.
S. S. M. Evy Sulistianingsih, “Prediksi Nilai Tukar Dolar Amerika Serikat Terhadap Rupiah Dengan Metode Support Vector Regression (Svr),” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 8, no. 1, pp. 1–10, 2018, doi: 10.26418/bbimst.v8i1.30503.
S. C. Hillmer and W. W. S. Wei, Time Series Analysis: Univariate and Multivariate Methods., vol. 86, no. 413. 1991. doi: 10.2307/2289741.
I. Cholissodin and A. A. Soebroto, “AI , MACHINE LEARNING & DEEP LEARNING ( Teori & Implementasi ),” no. July 2019, 2021.
Trivusi, “Algoritma Support Vector Regression (SVR): Jenis SVM untuk Regresi,” 2022. https://www.trivusi.web.id/2022/08/algoritma-svr.html
N. D. Maulana, B. D. Setiawan, and C. Dewi, Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus : Harum Bakery), vol. 3, no. 3. 2019.
T. M. N. Utami, D. C. R. Novitasari, F. Setiawan, N. Ulinnuha, and Y. Farida, “Tide Prediction in Prigi Beach using Support Vector Regression (SVR) Method,” Sci. J. Informatics, vol. 8, no. 2, pp. 194–201, 2021, doi: 10.15294/sji.v8i2.28906.
D. I. Ridwan, C. Setianingsih, and M. A. Murty, “Prediksi Penggunaan Energi Listrik Dengan Menggunakan Metode Support Vector Regression,” vol. 8, no. 6, pp. 2–3, 2021.
W. Anugerah, “Perbedaan SVM Linear dan Non Linear: Mana yang Lebih Baik?,” 2023. https://www.localstartupfest.id/faq/perbedaan-svm-linear-dan-non-linear/
M. L. Subiyanto, Y. Amanda, and M. N. Fachrian, “Peramalan Kasus Harian Monkeypox Dunia Dengan Pendekatan Support Vector Regression,” pp. 27–36, 2022.
A. N. Safira, B. Warsito, and A. Rusgiyono, “Analisis Support Vector Regression (Svr) Dengan Algoritma Grid Search Time Series Cross Validation Untuk Prediksi Jumlah Kasus Terkonfirmasi Covid-19 Di Indonesia,” J. Gaussian, vol. 11, no. 4, pp. 512–521, 2023, doi: 10.14710/j.gauss.11.4.512-521.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Jumlah Perceraian Menggunakan Metode Support Vector Regression (SVR)
Pages: 208-217
Copyright (c) 2023 Eka Suryani Indra Septiawati, Elvia Budianita, Fitri Insani, Lola Oktavia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).