Pengujian Jaringan Saraf Tiruan Dalam Mendiagnosa Gangguan Jiwa Menggunakan Algoritma Backpropogation Levenberg-Marquardt
Abstract
Mental disorders are mental health issues that make it hard to meet one's own or other people's needs. A person's life may be affected by changes in behavior brought on by this condition. To conquer this issue, a backpropagation calculation has been created to help with distinguishing mental problems. This calculation utilizes information got from mental tests to distinguish early indications of mental problems in an individual. With this calculation, psychological wellness experts can settle on additional quick and precise symptomatic choices. The Levenberg-Marquadt method and the backpropogation algorithm were used in this study to diagnose mental disorders. The aim of this study is to make it easier to diagnose mental disorders by analyzing a patient using the 24 attributes of the questions. After the diagnosis is made, the results will show up, and the Levenberg-Marquardt Backpropagation Algorithm will be used to test a person to see if they have bipolar disorder, OCD, or any other disorder. Researchers will have a difficult time determining the patient's mental illness if this diagnosis is not carried out. The aftereffects of this study are as demonstrative inquiries for mental issues that have been given. The Levenberg Marquadt method backpropagation algorithm is the bridge to accuracy, supporting this study's success. MSE is 24-10-1, with training performance equal to 0.000014246 and testing performance equal to 0.0000146. The diagnosis that comes out of it is more accurate the less error there is.
Downloads
References
S. Indarjo, “ Kesehatan Jiwa Remaja,” Jurnal Kesehatan Masyarakat , Pp. 48-57, 2013.
B. W. &. A. S. G. Adisty Wismani Putri, “ Kesehatan Mental Masyarakat Indonesia (Pengetahuan, Dan Keterbukaan Masyarakat Terhadap Gangguan Kesehatan Mental),” Prosiding Ks: Riset & Pkm , Pp. 147 - 300 , 2015.
S. Mutmainah, “Kemungkinan Depresi Dari Postingan Pada Media Sosial,” Jurnal Snati (Issn 2807-5935), Vol. 1, 2022.
F. A. A. Annisa Rahmadhani, “Sistem Pakar Deteksi Dini Kesehatan Mental Menggunakan Metode Dempster-Shafer Mental Health Initial Detection Expert System Using Dempster Shafer Method,” Jurnal Sisfotenika , Vol. 10, 2020.
F. Y. P. D. I. A. Indrawan, “ Eksplorasi Ruang Terapetik: Respon Kuratif Terhadap Gangguan Mental Pada Anak,” Jurnal Sains Dan Seni Its , Vol. 10, Pp. 2337-3520 , 2021 .
N. M. D. S. N. P. E. D. Y. Kadek Putra Sanchaya, “ Hubungan Dukungan Keluarga Dengan Kualitas Hidup Orang Dengan Gangguan Jiwa,” Jurnal Ilmu Keperawatan Jiwa , Vol. 1, Pp. 87-92, 2018 .
E. M. V. S. T.Sutojo, Kecerdasan Buatan, Yogyakarta: Andi, 2011.
E. A. A. N. Roustaei, “Applying Artificial Neural-Network Model To Predict Psychiatric Symptoms,” Pmc Pubmed Central, Vol. 12, Pp. 1-7, 2022.
R. Parmanda, “Penerapan Fuzzy Backpropagation Dalam Mendiagnosa Penyakit Kejiwaan Skizofrenia,” 2020.
A. S. Ramadhan, “Sistem Pakar Diagnosa Penyakit Kejiwaan Dengan Metode Forward Chaining Berbasis Web,” Juti: Jurnal Ilmiah Teknologi Informasi , 2021.
N. P. Rini Savira, “A Survey On Problems Caused By Psychological Factors Among Gen Z,” Jurnal Dakwah Dan Ilmu Komunikasi , Vol. 2, Pp. 158-167 , 2021 .
E. C. D. Hanny Tia Lestari, “Klasifikasi Sinyal Elektroensephalogram Berdasarkan Kondisi Emosional Menggunakan Wavelet Dan Jaringan Syaraf Tiruan,” Prosising Snija 2015 , 2015.
M. S. Hindayati Mustafidah, “ Tingkat Ketepatan Pengenalan Pola Data Algoritma Pelatihan Pada Jaringan Syaraf Tiruan Menggunakan Model Neuron 10-16-1 Dan 15-29-1,” Sainteks, Vol. 19, Pp. 187-197, 2022.
S. K. Kiki, “ Analisis Jaringan Saraf Tiruan Dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi,” 2015.
A. M. P. N. N. Ferry Rahmadani, “Jaringan Syaraf Tiruan Prediksi Jumlah Barang Menggunakan Metode Backpropagation (Studikasus: Kantor Pos Binjai),” Jtik (Jurnal Teknik Informatika Kamputama), Vol. 5, Pp. 100-106, 2021.
M. W. M. D. M. Z. Solikhun, “Backprpogation Network Optimization Using One Step Secant (Oss) Algorithm,” Materials Science And Engineering, Vol. 1, 2020.
A. Y. R. H. Hindayati Mustafidah, “Optimasi Algoritma Pelatihan Levenberg–Marquardt Berdasarkan Variasi Nilai Learning-Rate Dan Jumlah Neuron Dalam Lapisan Tersembunyi (Optimization Of Levenberg-Marquardt Training Algorithm Based On The Variations Value Of Learning-Rate And The Number,” Juita , Vol. Vii, Pp. 55-62 , 2019 .
A. P. W. I. P. M. S. R. A. Azhar Fadilah Zuhri, “Optimasi Levenberg-Marquardt Backpropagation Dalam Mempercepat Pelatihan Backpropagation,” Seminar Nasional Sains Dan Teknologi Informasi (Sensasi) , Pp. 627-630, 2021.
L. D. Costantini, “Penyaringan Depresi Dalam Perawatan Primer Dengan Kuesioner Kesehatan Pasien-9 (Phq-9): Tinjauan Sistematis,” Jurnal Gangguan Afektif , Pp. 473-483, 2021.
A. Y. H Mustafidah, “Testing Design Of Neural Parameters In Optimization Training Algorithm,” International Conference Of Result And Comunity Services, Pp. 139-146.
K. A. P. L.-M. D. V. B. N. P. L. Tersembunyi, “Hindayanti Mustafidah, Muhamad Zaeni Budiastanto, Suwarsito Suwarsito,” Juita: Jurnal Informatika, Vol. 7, Pp. 115-123, 2019.
J. S. D. Raharjo, “Model Artificial Neural Network Berbasis Particle Swarm Optimization Untuk Prediksi Laju Inflasi,” Sistem Komputer, 2013.
A. M. N. Feri Rahmadani, “Jaringan Syaraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation ( Studi Kasus: Kantor Pos Binjai),” Jurnal Teknik Informatika Kaputama (Jtik), Vol. 5, Pp. 100-106, 2021.
M. S. Hindayati Mustafidah, “Tingkat Ketepatan Pengenalan Pola Data Algoritma Pelatihan Pada Jaringan Syaraf Tiruan Menggunakan Model Neuron 10-16-1 Dan 15-29-1,” Sainteks, Vol. 19, Pp. 187-197, 2022 .
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pengujian Jaringan Saraf Tiruan Dalam Mendiagnosa Gangguan Jiwa Menggunakan Algoritma Backpropogation Levenberg-Marquardt
Pages: 920-927
Copyright (c) 2023 Solikhun Solikhun, Sundari Putri Lestari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















