Implementation of Random Forest Optimized with Ant Colony Optimization (ACO) for Breast Cancer Prediction


  • Ade Ismiaty Ramadhona Ht. Barat * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Sandy Putra Siregar STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Poningsih Poningsih STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Solikhun Solikhun STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Rahmat Widia Sembiring Politeknik Negeri Medan, Medan, Indonesia
  • (*) Corresponding Author
Keywords: ACO; Breast Cancer; Optimization; Predictions; Random Forest

Abstract

Breast cancer is a significant disease impacting women globally, highlighting the necessity for precise and dependable diagnostic models. This study aims to improve breast cancer prediction by optimizing the Random Forest algorithm using Ant Colony Optimization (ACO). This study uses datasets containing various cell characteristics to build and evaluate models. The ACO algorithm is applied to fine-tune the hyperparameters of the Random Forest model and improve its predictive performance. The experimental results showed that the optimized Random Forest model outperformed the baseline model in all evaluation metrics. The optimized model achieved an accuracy of 94.74%, precision of 97.92%, recall 90.38%, an F1 score of 92.93%, and an AUC score of 0, 9449 compared to the basic Random Forest model, with lower scores across all metrics. This improvement highlights the effectiveness of ACOs in improving model performance, especially in reducing false negatives, which are critical for medical diagnosis. This study demonstrates that ACO successfully fine-tunes Random Forest hyperparameters, achieving superior accuracy compared to baseline and outperforming previous optimization methods such as PSO. These findings confirm that the combination of Random Forest and ACO offers a powerful and effective approach to improving the accuracy of breast cancer predictions, making them a valuable tool for clinical decision-making.

Downloads

Download data is not yet available.

References

A. Banerjee, S. Das, A. Biswas, dan A. K. Tiwari, “An Intelligent Model for prediction of Breast Cancer applying Ant Colony Optimization,” Biosci. Biotechnol. Res. Asia, vol. 22, no. 1, hal. 137–148, Mar 2025, doi: 10.13005/bbra/3347.

P. langgeng wicaksono ellwid Putra, M. Naufal, dan E. Y. Hidayat, “A Comparative Study of MobileNet Architecture Optimizer for Crowd Prediction,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, hal. 241–247, 2023, doi: 10.30591/jpit.v8i3.5703.

F. Zamaninasab, A. Fendereski, Z. Zamaninasab, G. Godazandeh, dan J. Y. Charati, “Predicting Factors Affecting Lymph Node Involvement in Breast Cancer Using Random Forest Approaches,” Int. J. Cancer Manag. , vol. 17, no. 1, hal. 1–11, Apr 2024, doi: 10.5812/ijcm-140283.

Lina Oktavia dan Wachyu Amelia, “Hubungan Pengetahuan dan Sikap tentang Pemeriksaan Payudara Sendiri (SADARI) dalam Mendeteksi Dini Kanker Payudara,” Lentera Perawat, vol. 5, no. 1, hal. 39–43, 2024, doi: 10.52235/lp.v5i1.291.

S. Azahra, P. Kusumaningtyas, dan M. Rofi, “Deteksi Dini Kanker Payudara Menggunakan Citra Ultrasonografi Berbasis Convolutional Neural Networks dan Particle Swarm Optimization,” vol. 6, no. 2, hal. 456–465, 2025, doi: 10.47065/josyc.v6i2.6637.

N. Aprilia dan R. Rumini, “Breast Cancer Classification based on Ultrasound Images using the Support Vector Machine (SVM) Algorithm,” Sistemasi, vol. 13, no. 4, hal. 1438, 2024, doi: 10.32520/stmsi.v13i4.4113.

N. Afiatuddin, M. T. Wicaksono, V. R. Akbar, R. Rahmaddeni, dan D. Wulandari, “Komparasi Algoritma Machine Learning dalam Klasifikasi Kanker Payudara,” J. Media Inform. Budidarma, vol. 8, no. 2, hal. 889, Apr 2024, doi: 10.30865/mib.v8i2.7457.

E. Lestari dan W. I. Rahayu, “Prediksi Keganasan Kanker Payudara Dengan Pendekatan Machine Learning,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, hal. 1966–1971, 2023, doi: 10.36040/jati.v7i3.6963.

F. Elfaladonna, I. G. T. Isa, D. Sartika, Y. Yusniarti, dan A. M. Putra, Buku Ajar Dasar Exploratory Data Analysis (EDA).pdf, 1st ed. Pekalongan: PT Nasya Expanding Management, 2024.

P. Prihandoko, R. G. Alam, G. Gunawan, dan D. Abdullah, Memahami Konsep dan Implementasi Machine Learning, vol. 01. 2024. [Daring]. Tersedia pada: https://www.google.co.id/books/edition/Memahami_Konsep_dan_Implementasi_Machine/_831EAAAQBAJ?hl=id&gbpv=1

T. Ahmed Khan, R. Sadiq, Z. Shahid, M. M. Alam, dan M. Mohd Su’ud, “Sentiment Analysis using Support Vector Machine and Random Forest,” J. Informatics Web Eng., vol. 3, no. 1, hal. 67–75, 2024, doi: 10.33093/jiwe.2024.3.1.5.

F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 4, hal. 407–420, 2024, doi: 10.62411/jcta.10323.

Y. Wang, S. Jin, dan G. Dardanelli, “Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images,” Remote Sens., vol. 16, no. 7, 2024, doi: 10.3390/rs16071124.

A. Prayogi, M. A. S. Pane, R. Dian, R. M. Siregar, R. A. Sugianto, dan H. F. S. Simbolon, “Penggunaan Random Forest dan Analisis Perilaku untuk Prediksi Serangan DDoS dalam Lingkungan Cloud Computing,” Techno.Com, vol. 23, no. 3, hal. 668–678, 2024, doi: 10.62411/tc.v23i3.11317.

S. Rasheed, G. K. Kumar, D. M. Rani, M. V. V. P. Kantipudi, dan M. Anila, “Heart Disease Prediction Using GridSearchCV and Random Forest,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 10, 2024, doi: 10.4108/eetpht.10.5523.

D. Shan, S. Zhang, X. Wang, dan P. Zhang, “Path-Planning Strategy: Adaptive Ant Colony Optimization Combined with an Enhanced Dynamic Window Approach,” Electron., vol. 13, no. 5, hal. 1–18, 2024, doi: 10.3390/electronics13050825.

S. W. Lee, K. S. Heo, M. A. Kim, D. K. Kim, dan H. Choi, “Multiple-Junction-Based Traffic-Aware Routing Protocol Using ACO Algorithm in Urban Vehicular Networks,” Sensors, vol. 24, no. 9, 2024, doi: 10.3390/s24092913.

K. Xia, Y. Li, dan B. Zhu, “Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading,” IEEE Access, vol. 12, no. March, hal. 44817–44825, 2024, doi: 10.1109/ACCESS.2024.3381345.

D. Benaya, “Implementasi Random Forest dalam Klasifikasi Kanker Paru-Paru,” JOINTER J. Informatics Eng., vol. 5, no. 01, hal. 27–31, Jun 2024, doi: 10.53682/jointer.v5i01.331.

F. Melani dan S. Sulastri, “Analisis Perbandingan Klasifikasi Algoritma CART dengan Algoritma C 4.5 Pada Kasus Penderita Kanker Payudara,” J. Tekno Kompak, vol. 17, no. 1, hal. 171–183, 2023, doi: 10.33365/jtk.v17i1.2379.

Y. Jin, A. Lan, Y. Dai, L. Jiang, dan S. Liu, “Development and testing of a random forest-based machine learning model for predicting events among breast cancer patients with a poor response to neoadjuvant chemotherapy,” Eur. J. Med. Res., vol. 28, no. 1, 2023, doi: 10.1186/s40001-023-01361-7.

M. Botlagunta et al., “Classification and diagnostic prediction of breast cancer metastasis on clinical data using machine learning algorithms,” Sci. Rep., vol. 13, no. 1, hal. 1–17, 2023, doi: 10.1038/s41598-023-27548-w.

A. C. Salwa Alexita, P. Kusumaningtyas, dan M. Rofi’i, “Optimasi Algoritma Random Forest Menggunakan PSO Untuk Klasifikasi Kanker Payudara Dengan Citra Mammograms,” Tek. STTKD J. Tek. Elektron. Engine, vol. 11, no. 1, hal. 47–54, Feb 2025, doi: 10.56521/teknika.v11i1.1346.

D. Wijayanto dan Bambang Pilu Hartato, “Analisis Perbandingan Performa Algoritma XGBoost dan LightGBM pada Klasifikasi Kanker Payudara,” Indones. J. Comput. Sci., vol. 13, no. 2, hal. 3207–3218, 2024, doi: 10.33022/ijcs.v13i2.3901.

R. F. Putra et al., Algoritma Pembelajaran Mesin Dasar, Teknik, dan Aplikasi.pdf, 1st ed. Jambi: PT. Sonpedia Publishing Indonesia, 2024.

C. E. Garcia, M. R. Camana, dan I. Koo, “ACO-Based Scheme in Edge Learning NOMA Networks for Task-Oriented Communications,” IEEE Access, vol. 12, no. March, hal. 37692–37701, 2024, doi: 10.1109/ACCESS.2024.3374635.

T. Zhou dan W. Wei, “Mobile robot path planning based on an improved ACO algorithm and path optimization,” Multimed. Tools Appl., vol. 84, no. 12, hal. 10899–10922, 2024, doi: 10.1007/s11042-024-19370-x.

C. Chandrashekar, P. Krishnadoss, V. Kedalu Poornachary, B. Ananthakrishnan, dan K. Rangasamy, “HWACOA Scheduler: Hybrid Weighted Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing,” Appl. Sci., vol. 13, no. 6, hal. 1–23, 2023, doi: 10.3390/app13063433.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementation of Random Forest Optimized with Ant Colony Optimization (ACO) for Breast Cancer Prediction

Dimensions Badge
Article History
Submitted: 2025-03-12
Published: 2025-08-31
Abstract View: 29 times
PDF Download: 7 times
Section
Articles