Market Potential Analysis Based on Population and Land Area using K-Means Clustering and MCDM Approaches
Abstract
In an increasingly competitive global market, accurately identifying untapped market potential in small to medium-sized regions, often overlooked by traditional single-indicator analyses, presents a significant challenge for strategic decision-making. This study addresses this by proposing a hybrid analytical framework integrating K-Means Clustering with Multi-Criteria Decision-Making (MCDM) methods, utilizing population size and land area as core indicators. The primary objective is to develop a robust market potential analysis model capable of systematically classifying regions and providing actionable insights for resource optimization and market expansion. The methodology involves determining the optimal number of clusters using the elbow method (k=3, with a silhouette score of 0.8862), followed by K-Means clustering to segment Asian countries into distinct groups. Subsequently, three MCDM methods SAW, WP, and WASPAS are applied to rank countries within the most relevant cluster (low population and area) under various weighting scenarios. The results consistently demonstrate Turkey's top ranking across all MCDM methods, highlighting its robust market potential regardless of weight variations. Crucially, a very strong agreement in rankings between the MCDM methods was observed, evidenced by Spearman's correlation coefficients consistently above 0.98, with the highest correlation between SAW and WASPAS (0.998379 for [0.3, 0.7] weights). This high correlation confirms the reliability and consistency of the model, concluding that SAW and WASPAS are highly suitable for this analysis, and identifying Turkey as the leading country in market potential among 50 Asian nations based on the criteria studied.
Downloads
References
R. Kumar, “A Comprehensive Review of MCDM Methods, Applications, and Emerging Trends,” Decis. Mak. Adv., vol. 3, no. 1, hal. 185–199, 2025, doi: https://doi.org/10.31181/dma31202569.
S. K. Sahoo dan S. S. Goswami, “A comprehensive review of multiple criteria decision-making (MCDM) Methods: advancements, applications, and future directions,” Decis. Mak. Adv., vol. 1, no. 1, hal. 25–48, 2023, doi: https://doi.org/10.31181/dma1120237.
A. Sotoudeh-Anvari, “TheapplicationsofMCDMmethodsinCOVID-19pandemic: Astateof theartreview,” Appl. Soft Comput., vol. 126, no. September, hal. 1–40, 2022, doi: https://doi.org/10.1016/j.asoc.2022.109238.
M. Z. Lubis, Ruziana, R. Fadillah, dan R. M. F. Lubis, “Decision Support System for Determining New Branch Locations Applying the Multi Attribute Utility Theory (MAUT) Method,” Int. J. Informatics Data Sci., vol. 1, no. 1, hal. 36–45, 2023, [Daring]. Tersedia pada: https://journals.adaresearch.or.id/ijids/article/view/17
M. Zaman, F. Ghani, A. Khan, S. Abdullah, dan F. Khan, “Complex Fermatean fuzzy extended TOPSIS method and its applications in decision making,” Heliyon, vol. 9, no. 9, hal. 1–28, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e19170.
A. N. Purnama, W. P. Mahardika, R. Fadillah, dan M. Mesran, “Sistem Pendukung Keputusan Penentuan Siaran Edukasi di Televisi Menggunakan Weight Aggregated Sum Product Assesment Method,” JIKTEKS J. Ilmu Komput. dan Teknol. Inf., vol. 1, no. 3, hal. 8–16, 2023, [Daring]. Tersedia pada: https://jurnal.faatuatua.com/index.php/JIKTEKS/article/view/11
V. Simi, D. Lazarevi, dan M. Dobrodolac, “Picture fuzzy WASPAS method for selecting last-mile delivery mode : a case study of Belgrade,” Eur. Transp. Res. Rev., vol. 13, no. 43, hal. 1–22, 2021, doi: https://doi.org/10.1186/s12544-021-00501-6.
R. Yunitarini dan E. Widiaswanti, “Decision Support System for Industry Machine Maintenance Using Weight Product (WP) Method,” TIERS Inf. Technol. J., vol. 3, no. 2, hal. 91–99, 2022, doi: https://doi.org/10.38043/tiers.v3i2.3880.
M. Y. A.-H. Syah, M. R. Sanjaya, E. Lestari, dan B. W. Putra, “Sistem Pendukung Keputusan Dengan Menerapkan Metode TOPSIS Untuk Menentukan Siswa Terbaik,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 2, hal. 149–154, 2023, doi: 10.47233/jteksis.v5i2.794.
T. R. Noviandy, I. Hardi, Z. Zahriah, R. Sofyan, dan N. R. Sasmita, “Environmental and Economic Clustering of Indonesian Provinces : Insights from K-Means Analysis,” Leuser J. Environ. Stud., vol. 2, no. 1, hal. 41–51, 2024, doi: 10.60084/ljes.v2i1.181.
S. Setiawansyah dan V. H. Saputra, “Kombinasi Pembobotan PIPRECIA-S dan Metode SAW dalam Pemilihan Ketua Organisasi Sekolah,” J. Ilm. Inform. DAN ILMU Komput., vol. 2, no. 1, hal. 32–40, 2023, doi: https://doi.org/10.58602/jima-ilkom.v2i1.16.
D. Fransiska, “Sistem Pendukung Keputusan Menentukan E-Commerce Terbaik Menggunakan Metode Weighted Product,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 10, no. 1, hal. 41–48, 2023, doi: 10.30656/prosisko.v10i1.5957.
F. Mahdi, F. Faisal, D. Pri Indini, dan M. Mesran, “Penerapan Metode WASPAS dan ROC (Rank Order Centroid) dalam Pengangkatan Karyawan Kontrak,” Bull. Comput. Sci. Res., vol. 3, no. 2, hal. 197−202, 2023, doi: https://doi.org/10.47065/bulletincsr.v3i2.232.
A. M. P. Nugraha dan I. H. Mursyidin, “Sistem Pendukung Keputusan Penilaian Kinerja Guru Menggunakan Metode SAW,” bit-Tech, vol. 7, no. 1, hal. 174–183, 2024, doi: https://doi.org/10.32877/bt.v7i1.1608.
B. Wardana, “Implementasi Metode Weight Product Untuk Penilaian Kinerja Karyawan Di Pt. Pertamina GAS,” J. Softw. Eng. Inf. Syst., vol. 4, no. 1, hal. 16–22, 2024, doi: https://doi.org/10.37859/seis.v4i1.6701.
N. K. T. Y. Pratiwi, P. A. E. D. Wasundhari, K. Nikova, dan G. S. Mahendra, “Rekomendasi Hotel di Kawasan Lovina Menggunakan Sistem Pendukung Keputusan dengan Metode WASPAS,” J. Sist. Inf. Bisnis, vol. 5, no. 1, hal. 30–40, 2024, doi: https://doi.org/10.55122/junsibi.v5i1.1146.
A. A. Rohman, O. S. Bachri, dan P. Wahyuningsih, “Penentuan Karyawan Terbaik Menggunakan Metode MOORA pada Swalayan M di Kota Tegal,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 6, no. 1, hal. 36–41, 2024, doi: https://doi.org/10.46772/intech.v6i1.1563.
M. N. D. Satria, “Sistem Pendukung Keputusan Penerimaan Staff Administrasi Menggunakan Metode VIKOR,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, hal. 39–49, 2023, doi: https://doi.org/10.58602/jaiti.v1i1.24.
M. F. Faisal, A. Suryopratomo, dan K. M. Ishak, “Sistem Pendukung Keputusan Seleksi Calon TKI ke Jepang dengan Metode Topsis,” J. Dimamu, vol. 3, no. 2, hal. 218–222, 2024, doi: https://doi.org/10.32627/dimamu.v3i2.948.
N. Fauziah dan Y. Fernando, “Sistem Pendukung Keputusan Menentukan Prioritas Pasien Binaan Yayasan GKI Menggunakan Metode SAW,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, hal. 418–427, 2024, doi: 10.35889/jutisi.v13i1.1835.
Z. R. Noviana, E. Seniwati, dan N. T. Hartanti, “Sistem Penunjang Keputusan Pemilihan Mobil Bekas Menggunakan Metode SAW,” J. Inf. Syst. Manag., vol. 6, no. 1, hal. 70–78, 2024, doi: https://doi.org/10.24076/joism.2024v6i1.1676.
V. Terisia, S. A. Arman, dan M. Syamsu, “Rekomendasi Karyawan Tetap Menggunakan Metode Weighted Product (WP) pada PT. KB Multifinance,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 7, no. 1, hal. 57–64, 2024, doi: https://doi.org/10.53513/jsk.v7i1.9518.
D. Guswandi, H. Syahputra, M. Hafizh, Rita, dan D. Kartika, “Analisis Metode Weighted Product dalam menentukan Order Barang Terbaik pada Marketplace Shopee,” J. KomtekInfo, vol. 9, no. 2, hal. 55–60, 2022, doi: https://doi.org/10.35134/komtekinfo.v9i2.277.
J. Eska, A. N. Sari, dan H. Hidayatullah, “Implementasi Metode Weighted Product Seleksi Penerima Bantuan Disabilitas Pada Dinas Sosial Kabupaten Batubara,” J. Sci. Soc. Res., vol. 7, no. 1, hal. 1–10, 2024, doi: https://doi.org/10.54314/jssr.v7i1.1688.
L. Septyoadhi, M. Mardiyanto, dan I. L. I. Astutik, “Sistem Pendukung Keputusan Penerimaan Siswa Baru Menggunakan Metode Analytical Hierarchy Process,” CAHAYAtech, vol. 7, no. 1, hal. 78, 2019, doi: 10.47047/ct.v7i1.6.
T. H. B. Aviani dan A. T. Hidayat, “Sistem Pendukung Keputusan Seleksi Pemberian Uang Kuliah Tunggal Menerapkan Metode WASPAS,” J. Sist. Komput. dan Inform., vol. 2, no. 1, hal. 102–109, 2020, doi: 10.30865/json.v2i1.2482.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Market Potential Analysis Based on Population and Land Area using K-Means Clustering and MCDM Approaches
Pages: 772-780
Copyright (c) 2025 Ita Arfyanti, Tommy Bustomi, Ivan Haristyawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















