Perbandingan Kinerja Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Darah Tinggi


  • Ita Arfyanti * Mail STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • Tommy Bustomi Politeknik Negeri Samarinda, Samarinda, Indonesia
  • Ivan Haristyawan STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • (*) Corresponding Author
Keywords: Hypertension; Data Mining; Performance; Naive Bayes Algorithm; C4.5 Algorithm

Abstract

High blood pressure or hypertension is one of the major health problems in the world. Although this disease can be treated, many individuals are unaware that they have hypertension, because the symptoms are often not visible or felt. Therefore, early detection of high blood pressure is very important to prevent serious complications that can endanger health. In the digital era and advances in information technology, a lot of health data can be used for analysis. One of the rapidly developing approaches to help diagnose disease is by utilizing data mining. Data mining is the process of exploring and analyzing big data to find hidden patterns, information, and knowledge that can be used to support decision making and predictions. One technique in data mining that is often used to predict conditions or diseases is the classification algorithm. However, the comparison of performance between these classification algorithms in the context of hypertension prediction is still limited. This study aims to explore and compare the performance of classification algorithms in predicting hypertension, using a dataset containing medical information about factors that affect a person's blood pressure. The Naive Bayes algorithm is a classification method based on Bayes' theorem and the assumption of independence between features. The C4.5 algorithm is a machine learning algorithm for building decision trees used in data classification. The results of this study are expected to contribute to the development of a data mining-based decision support system that can be used to detect and predict the risk of hypertension. the accuracy value of the Naive Bayes algorithm is 87.01% and the accuracy value of the C4.5 algorithm is 94.72%. From the process that has been carried out, it can be said that the C4.5 algorithm is an algorithm with better performance than the Naive Bayes algorithm. Thus, the model used in the process of diagnosing hypertension is the model of the C4.5 algorithm.

Downloads

Download data is not yet available.

References

A. Az, R. Septian, M. A. Saktiawan, and R. A. Saputra, “PREDIKSI PENYAKIT HIPERTENSI MENGGUNAKAN MACHINE LEARNING DENGAN ALGORITMA REGRESI LOGISTIK,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 6, pp. 12062–12068, 2024.

A. S. Novari and U. K. Nisak S, “Prediksi Faktor yang Mempengaruhi Hipertensi dengan Metode Data Mining untuk meningkatkan Pelayanan Kesehatan di UPT Puskesmas Ngoro,” Phys. Sci. Life Sci. and Engineering, vol. 1, no. 2, p. 16, 2024, doi: 10.47134/pslse.v1i2.201.

R. Sahila, T. Widiharih, and I. T. Utami, “ANALISIS KLASIFIKASI MENGGUNAKAN REGRESI LOGISTIK BINER DAN ALGORITMA NAÏVE BAYES CLASSIFIER PADA PENYAKIT HIPERTENSI,” J. GAUSSIAN, vol. 13, no. 2007, pp. 319–327, 2024, doi: 10.14710/j.gauss.13.2.319-327.

R. A. Anggraini, Ratningsih, Y. Apriyani, M. W. Pertiwi, M. Kusmira, and S. Bahri, “Klasifikasi Jenis Kismis Menggunakan Teknik Data Mining,” J. Kaji. Ilm., vol. 24, no. 1, pp. 45–56, 2024, doi: 10.31599/ryvqk945.

Wartumi, R. Kurniawan, and A. Y. Wijaya, “Analisis Data Sentimen Ulasan Pengguna Aplikasi Shopee di Google Play Store dengan Klasifikasi Algoritma Naïve Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 164–170, 2024.

W. Bagaskara, N. N. Pusparini, and Irwansyah, “KLASIFIKASI PENJADWALAN KERJA PERAWATAN AIR CONDITIONER (AC) MENGGUNAKAN ALGORITMA DECISION TREE (C4.5) PADA PT XYZ,” INFOTECH J. Technol. Inf., vol. 10, no. 1, pp. 67–76, 2024.

H. T. Santoso, F. A. Felmidi, A. Nur, A. Ristyawan, and E. Daniati, “Analisis Kinerja Algoritma Data Mining pada Klasifikasi Tingkat Obesitas dengan K-Fold Cross Validation dan AUC,” INOTEK, vol. 8, pp. 113–122, 2024.

N. Anthira and Suendri, “Penerapan Data Mining Pada Klasifikasi Gangguan Jiwa Menggunakan Algoritma C5.0 Di RSJ. Mahoni Kota Medan,” J. Tek., vol. 18, no. x, pp. 571–582, 2024.

R. Hamonangan, R. K. Sari, S. Anwar, and T. Hartati, “Klasifikasi Algoritma KNN dalam menentukan Penerima Bantuan Langsung Tunai,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 198–204, 2024.

F. M. Siddiq, R. D. Aditya, and M. N. Hamidah, “Klasifikasi Penerima Zakat Fitrah Menggunakan Metode Naïve Bayes,” J. Electr. Eng. Comput. Sci., vol. 6, no. August, p. 128, 2024, [Online]. Available: http://eprints.ubhara.ac.id/908/.

A. Setiawan, Z. H. Nst, Z. Khairi, and L. Efrizoni, “KLASIFIKASI TINGKAT RISIKO DIABETES MENGGUNAKAN ALGORITMA,” JIRE (Jurnal Inform. Rekayasa Elektron., vol. 7, no. 2, pp. 263–271, 2024.

B. Susilo, N. A. Ramdhan, and O. S. Bachri, “Application of the K-Nearest Neighbor Algorithm for Predicting Digital Product Sales Penerapan Algoritma K-Nearest Neighbor untuk Prediksi Penjualan Produk Digital,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. October, pp. 1466–1476, 2024.

S. Dini Widianti et al., “Jurnal Informatika dan Rekayasa Perangkat Lunak Menentukan Nilai Gizi pada Balita Menggunakan Algoritma Support Vektor Machine (SVM) di Posyandu Kelurahan Ciherang,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, 2024.

A. R. Raharja, Jayadi, A. Pramudianto, and Y. Muchsam, “Penerapan Algoritma Decision Tree dalam Klasifikasi Data ‘Framingham’ Untuk Menunjukkan Risiko Seseorang Terkena Penyakit Jantung dalam 10 Tahun Mendatang,” Technol. J., vol. 1, no. 1, 2024, doi: 10.62872/cwgzp962.

W. A. Ridho, T. Wuryandari, and A. R. Hakim, “Perbandingan Kinerja Metode Klasifikasi K-Nearest Neighbor Dan Support Vector Machines Pada Dataset Parkinson,” J. Gaussian, vol. 12, no. 3, pp. 372–381, 2024, doi: 10.14710/j.gauss.12.3.372-381.

A. Masruriyah, H. Novita, C. Sukmawati, A. Ramadhan, S. Arif, and B. Dermawan, “Pengukuran Kinerja Model Klasifikasi dengan Data Oversampling pada Algoritma Supervised Learning untuk Penyakit Jantung,” Comput. Sci., vol. 4, no. 1, pp. 62–70, 2024, doi: 10.31294/coscience.v4i1.2389.

N. I. Yaman, A. R. Juwita, S. Arum, P. Lestari, and S. Faisal, “Perbandingan Kinerja Algoritma Decision Tree dan Random Forest untuk Klasifikasi Nutrisi pada Makanan Cepat Saji,” J. Algoritm., vol. 21, no. 2, pp. 184–195, 2024, doi: 10.33364/algoritma/v.21-2.1649.

M. R. Fanani and D. S. Sintia, “Klasifikasi Kesiapan Anak Masuk Sekolah Dasar menggunakan Algoritma Naïve Bayes dan Algoritma C4.5,” Innov. J. Soc. Sci. Res., vol. 4, no. 3, pp. 10547–10555, 2024, doi: 10.31004/innovative.v4i3.10425.

Sriani, I. Rusydi, and S. R. Nur Aisyiyah, “Impelementasi Data Mining terhadap Evaluasi Kinerja Guru dalam Mengajar Menggunakan Metode Naive Bayes Classifier,” VISA J. Vis. Ideas, vol. 4, no. 1, pp. 117–127, 2024, doi: 10.47467/visa.v4i1.1274.

M. Fansyuri and D. Yunita, “Analisa Citra Wajah Untuk Identifikasi Klasifikasi Jenis Kelamin Menggunakan Algoritma Naive Bayes,” Log. J. Ilmu Komput. dan Pendidik., vol. 2, no. 3, pp. 594–606, 2024, [Online]. Available: https://journal.mediapublikasi.id/index.php/logic.

N. Fidiyanto and A. N. Izzati, “Penerapan Data Mining Klasifikasi Lahan Tanam Buah Alpukat dengan Algoritma Naïve Bayes,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 5, no. 2, pp. 95–103, 2024.

M. Julkarnain and M. Yustiardin, “Penerapan Algoritma Naive Bayes Dalam Memprediksi Lulus Tepat Waktu Mahasiswa,” Digit. Transform. Technol., vol. 4, no. 2, pp. 848–858, 2024.

F. Ramadhan and H. Bhakti Dwi, “Klasifikasi Penilaian Kinerja Karyawan Menggunakan Algoritme Naïve Bayes (Studi Kasus Pt. As Sabar Sukses Berkah),” Kohesi J. Multidisiplin Saintek, vol. 4, no. 2, 2024, [Online]. Available: https://ejournal.warunayama.org/index.php/kohesi/article/view/4707.

Z. D. R. Sari, Jasmir, and Y. Arvita, “Penerapan Data Mining Untuk Prediksi Penyakit Diabetes Menggunakan Algoritma C4.5,” J. Inform. Dan Rekayasa Komput., vol. 4, no. April, pp. 827–834, 2024.

N. P. Panjaitan, S. Z. Harahap, and R. M. Ah, “Analisis Minat Masyarakat Menggunakan Media Sosial Menggunakan Algoritma C4.5 dan Metode Naïve Bayes,” Informatika, vol. 12, no. 3, pp. 1–23, 2024.

W. A. Cahyadi, S. Munafis, Y. E. Muda, and P. S. Informatika, “Penerapan Data Mining Dalam Penentuan Jurusan Siswa Dengan Metode Klasifikasi Algoritma C4 . 5 Studi Kasus SMAN 1 Leuwisadeng,” in Prosiding SENANTIAS: Seminar Nasional Hasil Penelitian dan PkM, 2024, vol. 5, no. 1, pp. 80–86.

N. Ndruru and A. Sinda, “Penerapan Data Mining Klasifikasi Kepuasan Pelanggan Transportasi Online Menggunakan Algoritma C4.5,” Katera J. Sains dan Teknol., vol. 1, no. 1, pp. 1–7, 2023, doi: 10.54367/means.v8i1.2569.

R. Xsanal Hakim, F. Putrawansyah, and R. Syahri, “Penerapan Algoritma C4.5 Untuk Prediksi Anak Stunting Di Kota Pagar Alam,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2469–2478, 2024, doi: 10.36040/jati.v8i2.9301.

D. M. Musa et al., “Penerapan Data Mining Untuk Klasifikasi Data Penjualan Pakan Ternak Terlaris Dengan Algoritma C4.5,” J. Teknlogi Inform. dan Komput. MH. Thamrin, vol. 10, no. 1, pp. 168–182, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Kinerja Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Darah Tinggi

Dimensions Badge
Article History
Submitted: 2024-12-19
Published: 2024-12-30
Abstract View: 69 times
PDF Download: 46 times
How to Cite
Arfyanti, I., Bustomi, T., & Haristyawan, I. (2024). Perbandingan Kinerja Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Darah Tinggi. Building of Informatics, Technology and Science (BITS), 6(3), 1987-1994. https://doi.org/10.47065/bits.v6i3.6477
Issue
Section
Articles