Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah
Abstract
The Indonesian Smart College Card (KIP Lecture) is a government program that has been implemented from 2020 until now. KIP Lectures are distributed by the Ministry of Education, Culture, Research and Technology through universities in each region. Where each university gets a different quota - based on the level of progress of the college. The provision of quotas for each university based on the accreditation at each university raises its own problems for these universities. The problem faced is that the number of new prospective students who register to take the KIP Lecture program exceeds the quota set for each university. The provision of KIP Lecture assistance to the wrong person will lead to misuse of assistance and also inappropriate targets. The acceptance of the selection process for new prospective students can be seen from the previous process that has been carried out. Data mining is a technique used to solve problems in large data processing. Decision Tree is an algorithm that is included in the classification technique in data mining. The process in the decision tree aims to group or classify data against their respective classes. The results of the Decision Tree algorithm are in the form of decision trees and rules, the results obtained are in the form of rules that can be used for future decision-making processes
Downloads
References
L. Swastina, “Penerapan Algoritma C4 . 5 Untuk Penentuan Jurusan Mahasiswa,” Gema Aktual., vol. 2, no. 1, pp. 93–98, 2018.
F. J. Kaunang, R. Rotikan, and G. S. Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree,” CogITo Smart J., vol. 4, no. 1, p. 213, 2018, doi: 10.31154/cogito.v4i1.115.213-218.
A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,” Neo Tek., vol. 5, no. 1, pp. 23–29, 2019, doi: 10.37760/neoteknika.v5i1.1379.
F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.
I. Sutoyo, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 217, 2018, doi: 10.33480/pilar.v14i2.926.
A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 7, no. 2, p. 217, 2021.
A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4 . 5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandaran,” Proceeding SINTAK 2019, pp. 134–139, 2019.
K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.
F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,” vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.
M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),” Paradig. - J. Komput. dan Inform., vol. 23, no. 2, 2021, doi: 10.31294/p.v23i2.11395.
D. P. Utomo and S. Aripin, “Penerapan Algoritma C5 . 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Seminar Nasional Riset Dan Information Science (SENARIS), 2021, vol. 3, pp. 7–12.
A. Budiyantara, I. Irwansyah, E. Prengki, P. A. Pratama, and N. Wiliani, “Komparasi Algoritma Decision Tree, Naive Bayes Dan K-Nearest Neighbor Untuk Memprediksi Mahasiswa Lulus Tepat Waktu,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 265–270, 2020, doi: 10.33480/jitk.v5i2.1214.
S. F. Utami, “Penerapan Data Mining Algoritma Decision Tree Berbasis PSO,” Semin. Nas. Teknol. Komput. Sains SAINTEKS 2020, pp. 677–681, 2020, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks.
N. Nurajijah, D. A. Ningtyas, and M. Wahyudi, “Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 2, pp. 85–90, 2019, doi: 10.31294/jki.v7i2.6839.
Dwita Elisa Sinaga, Agus Perdana Windarto, and Rizki Alfadillah Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus : Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: 10.30865/klik.v2i4.328.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah
Pages: 1196−1201
Copyright (c) 2022 Ita Arfyanti, Muhammad Fahmi, Pitrasacha Adytia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















