Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah


  • Ita Arfyanti * Mail STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • Muhammad Fahmi STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • Pitrasacha Adytia STMIK Widya Cipta Dharma, Samarinda, Indonesia
  • (*) Corresponding Author
Keywords: Data Mining; KIP-Lectures; Pattern; Reception; Decision Tree

Abstract

The Indonesian Smart College Card (KIP Lecture) is a government program that has been implemented from 2020 until now. KIP Lectures are distributed by the Ministry of Education, Culture, Research and Technology through universities in each region. Where each university gets a different quota - based on the level of progress of the college. The provision of quotas for each university based on the accreditation at each university raises its own problems for these universities. The problem faced is that the number of new prospective students who register to take the KIP Lecture program exceeds the quota set for each university. The provision of KIP Lecture assistance to the wrong person will lead to misuse of assistance and also inappropriate targets. The acceptance of the selection process for new prospective students can be seen from the previous process that has been carried out. Data mining is a technique used to solve problems in large data processing. Decision Tree is an algorithm that is included in the classification technique in data mining. The process in the decision tree aims to group or classify data against their respective classes. The results of the Decision Tree algorithm are in the form of decision trees and rules, the results obtained are in the form of rules that can be used for future decision-making processes

Downloads

Download data is not yet available.

References

L. Swastina, “Penerapan Algoritma C4 . 5 Untuk Penentuan Jurusan Mahasiswa,” Gema Aktual., vol. 2, no. 1, pp. 93–98, 2018.

F. J. Kaunang, R. Rotikan, and G. S. Tulung, “Pemodelan Sistem Prediksi Tanaman Pangan Menggunakan Algoritma Decision Tree,” CogITo Smart J., vol. 4, no. 1, p. 213, 2018, doi: 10.31154/cogito.v4i1.115.213-218.

A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,” Neo Tek., vol. 5, no. 1, pp. 23–29, 2019, doi: 10.37760/neoteknika.v5i1.1379.

F. M. Hana, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 32–39, 2020, doi: 10.47970/siskom-kb.v4i1.173.

I. Sutoyo, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 14, no. 2, p. 217, 2018, doi: 10.33480/pilar.v14i2.926.

A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Data Peserta Didik,” J. Pilar Nusa Mandiri, vol. 7, no. 2, p. 217, 2021.

A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4 . 5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandaran,” Proceeding SINTAK 2019, pp. 134–139, 2019.

K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.

F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,” vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.

M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),” Paradig. - J. Komput. dan Inform., vol. 23, no. 2, 2021, doi: 10.31294/p.v23i2.11395.

D. P. Utomo and S. Aripin, “Penerapan Algoritma C5 . 0 Untuk Mengetahui Pola Kepuasan Mahasiswa di Masa Pembelajaran Daring,” in Seminar Nasional Riset Dan Information Science (SENARIS), 2021, vol. 3, pp. 7–12.

A. Budiyantara, I. Irwansyah, E. Prengki, P. A. Pratama, and N. Wiliani, “Komparasi Algoritma Decision Tree, Naive Bayes Dan K-Nearest Neighbor Untuk Memprediksi Mahasiswa Lulus Tepat Waktu,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 265–270, 2020, doi: 10.33480/jitk.v5i2.1214.

S. F. Utami, “Penerapan Data Mining Algoritma Decision Tree Berbasis PSO,” Semin. Nas. Teknol. Komput. Sains SAINTEKS 2020, pp. 677–681, 2020, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks.

N. Nurajijah, D. A. Ningtyas, and M. Wahyudi, “Klasifikasi Siswa Smk Berpotensi Putus Sekolah Menggunakan Algoritma Decision Tree, Support Vector Machine Dan Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 2, pp. 85–90, 2019, doi: 10.31294/jki.v7i2.6839.

Dwita Elisa Sinaga, Agus Perdana Windarto, and Rizki Alfadillah Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus : Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: 10.30865/klik.v2i4.328.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah

Dimensions Badge
Article History
Submitted: 2022-09-18
Published: 2022-12-23
Abstract View: 1333 times
PDF Download: 1421 times
How to Cite
Arfyanti, I., Fahmi, M., & Adytia, P. (2022). Penerapan Algoritma Decision Tree Untuk Penentuan Pola Penerima Beasiswa KIP Kuliah. Building of Informatics, Technology and Science (BITS), 4(3), 1196−1201. https://doi.org/10.47065/bits.v4i3.2275
Issue
Section
Articles

Most read articles by the same author(s)