Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi
Abstract
Proverty is one of the problems that inhibits national and regional growth. This research uses data mining techniques. In this study tha data used were sourced from the 2012-2018 statistical center. The research uses data mining techniques. In the data processing using k-means method. K-means method is a method of grouping existing data into several groups where the data in one group has the same characteristics with each other and has different characteristics from the data in other groups. The number of records used is 34 provinces which are divided into 2 clusters namely high and low clusters. The purpose of this study is divided into 2 parts, namely the provincial group with a high proverty rate and the provincial group with the lowest proverty level. From the result of grouping there were 8 provinces of high cluster and 26 low clusters. It is hoped that this research can provide input to the government so that it can give more attention to provinces that are categorized as high in proverty
Downloads
References
N. Nurwati, “Kemiskinan : Model Pengukuran , Permasalahan dan Alternatif Kebijakan,” vol. 10, no. 1, pp. 1–11, 2008.
N. I. Febianto and N. D. Palasara, “Analisis Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018,” vol. 08, no. September, pp. 130–140, 2019.
W. Nengsih, “Descriptive Modelling Menggunakan K-Means Untuk Pengclusteran Tingkat Kemiskinan Di Propinsi Riau,” no. January, 2017.
M. G. Sadewo, A. P. Windarto, and D. Hartama, “PENERAPAN DATAMINING PADA POPULASI DAGING AYAM RAS PEDAGING DI INDONESIA BERDASARKAN PROVINSI MENGGUNAKAN K-MEANS CLUSTERING,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 1, pp. 60–67, 2017.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Eeccis, vol. 7, no. 1, pp. 59–64, 2013.
I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “MEMANFAATKAN ALGORITMA K-MEANS DALAM MENENTUKAN PEGAWAI YANG LAYAK MENGIKUTI ASESSMENT CENTER UNTUK CLUSTERING PROGRAM SDP,” CESS (Journal Comput. Eng. Syst. Sci., vol. 3, no. 1, pp. 87–93, 2018.
R. W. Sari and D. Hartama, “Data Mining : Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,” Semin. Nas. Sains Teknol. Inf., pp. 322–326, 2018.
E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi
Pages: 76-83
Copyright (c) 2020 Irmanita Nasution, Agus Perdana Windarto, M Fauzan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).