Penerapan Data Mining Klasifikasi C4.5 Pada Penerima Beasiswa di SMK Swasta Anak Bangsa


  • Millah Sari * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Harly Okprana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • (*) Corresponding Author
Keywords: Scholarship; Data Mining; Algoritma C4.5

Abstract

Data Mining is a series of processes to explore added value in the form of knowledge that has not been known manually from a data set. There are 5 (five) attributes used in this study, namely: Value, Attendance, Semester, Parents' Income (PO), and Number of Dependent Parents (JTO). Based on data processing using Rapid Miner 5.3.0.0 software, an accuracy value of 92.70% is obtained, meaning that the resulting rule is close to 100% correct. Where the results of the feasible precision label class are 92.05% and the inappropriate label is 93.24%. In accordance with these provisions, the results of manual calculations by Rapid Miner testing produce 9 models of rules or rules for Scholarship Recipients. This means that the results of the process carried out by researchers on the calculation of the C4.5 Algorithm and Rapidminer obtained the same and appropriate results. So that testing with Rapid Miner can be said to be successful and can find a decision tree in the case of Scholarship recipients.

Downloads

Download data is not yet available.

References

N. Hijriana and M. Rasyidan, “Penerapan Metode Decision Tree Algoritma C4 . 5 Untuk Seleksi,” Sains Dan Teknol., vol. 3, pp. 9–13, 2017.

M. A. Rahman, “Algoritma C45 Untuk Menentukan Mahasiswa Penerima Beasiswa (Studi Kasus : Pps Iain Raden Intan Bandar Lampung),” J. Teknol. Inf. Magister Darmajaya, vol. 1, no. 02, pp. 118–128, 2015.

A. Khoerunnisa, B. Irawan, and M. R. Rumani, “Analisis dan implementasi perbandingan algoritma c.45 dengan naïve bayes untuk prediksi penawaran produk,” E-Proceeding Eng., vol. 3, no. 3, pp. 5029–5035, 2016.

Tumini and L. Damayanti, “Aplikasi Data Mining Untuk Memprediksi Kelulusan Siswa Dengan Metode Naive Bayes Studi Kasus SMP Negeri 11 Kotabumu Utara,” Inform. SIMANTIK, vol. 3, no. 2, pp. 23–30, 2018.

N. Azwanti, “Algoritma C4.5 Untuk Memprediksi Mahasiswa Yang Mengulang Mata Kuliah (Studi Kasus Di Amik Labuhan Batu),” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 11–22, 2018, doi: 10.24176/simet.v9i1.1627.

H. Okprana, M. R. Lubis, and J. T. Hadinata, “Prediksi Kelulusan TOEFL Menggunakan Metode Resilient Backpropagation,” J. Edukasi dan Penelit. Inform., vol. 6, no. 2, p. 275, 2020, doi: 10.26418/jp.v6i2.41224.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.

D. Maurina and A. Z. Fanano, “Penerapan Data Mining Untuk Rekomendasi Beasiswa Pada Sma Muhammadiyah Gubug Menggunakan Algoritma C4.5,” J. UDINUS, pp. 5–6, 2015.

J. H. Jaman and N. I. P. Astuti, “Penerapan Algoritma C4.5 untuk Penentuan Penerima Beasiswa (Studi Kasus: SDN Karawang Kulon III),” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, pp. 25–29, 2018, doi: 10.36805/technoxplore.v3i1.796.

A. S. Suweleh, D. Susilowati, and U. Bumigora, “Aplikasi Penentuan Penerima Beasiswa Menggunakan Algoritma C4 . 5 Jurnal BITe : Jurnal Bumigora Information Technology Jurnal BITe : Jurnal Bumigora Information Technology,” vol. 2, no. 1, pp. 12–21, 2020, doi: 10.30812/bite.v2i1.798.

Rismayanti, “Implementasi Algoritma C4.5 Untuk Menentukan Penerima Beasiswa Di Stt Harapan Medan,” Media Infotama, vol. 12, no. 2, pp. 116–120, 2016.

G. R. P, A. P. Windarto, E. Irawan, and W. Saputra, “Penerapan Data Mining Menggunakan Algoritma C4 . 5 Dalam Mengukur Tingkat Kepuasan Pasien BPJS,” Pros. Semin. Ris. dan Inf. sains, vol. 2, pp. 376–385, 2020.

R. Winanjaya, F. Amir, and R. Doni, “Penerapan Data Mining Untuk Memprediksi Penerimaan Peserta Didik Baru Menggunakan Algoritma C4.5,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 1, 2019, doi: 10.30645/senaris.v1i0.1.

R. Nofitri and N. Irawati, “ANALISIS DATA HASIL KEUNTUNGAN MENGGUNAKAN PENDAHULUAN Penerapan teknologi informasi saat ini berkembang begitu pesat . Salah satunya penerapan teknologi yang dapat diterapkan didunia industri yaitu untuk evaluasi terhadap kinerja perusahaan . Evaluasi me,” vol. V, no. 2, pp. 199–204, 2019.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 224–230, 2018, doi: 10.30865/komik.v2i1.930.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Data Mining Klasifikasi C4.5 Pada Penerima Beasiswa di SMK Swasta Anak Bangsa

Dimensions Badge
Article History
Submitted: 2021-03-11
Published: 2021-03-31
Abstract View: 2837 times
PDF Download: 642 times
Issue
Section
Articles

Most read articles by the same author(s)

1 2 > >>