Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Demam Berdarah
Abstract
The number of cases of the spread of dengue hemorrhagic fever (DHF) in Beringin Country Village every year has increased for this reason, it is necessary to handle dengue hemorrhagic fever so that the spread does not increase dengue hemorrhagic fever cases every year. The vast natural conditions of Banyan Country Village make it difficult to monitor the spread of diseases based on the most cases. This causes slow prevention and control of the disease. For this reason, it is necessary to group or cluster diseases based on the number of cases that occur each year. This study aims to apply the K-Medoids algorithm to group dengue hemorrhagic fever data based on the number of cases each year. The process of solving problems can be done by processing data. Data mining is a data processing process for extracting information stored in the data set, in data mining the process of grouping data for the process of handling dengue hemorrhagic fever is included in clustering techniques. The K-medoids algorithm is a limiting clustering method for grouping a collection of objects into clusters. The data used is in the form of data on dengue sufferers, from 2017-2022. Test results were obtained for high cluster dengue disease of 72 members and low 28 members. The K-medoids algorithm can help facilitate the process of forming dengue hemorrhagic fever treatment clusters. Testing using manual calculations and the Rapidminer application gets the same results as the system. This shows that the system has worked well.
Downloads
References
A. Sukohar, “Demam Berdarah Dengue ( DBD ),” Medula, vol. 2, no. 2, pp. 1–15, 2014.
H. S. Kurniati, “Gambaran Pengetahuan Ibu Dan Metode Penanganan Demam Pada Balita Di Wilayah Puskesmas Pisangan Kota Tangerang Selatan,” Univ. Islam Negeri Syarif Hidayatullah, pp. 1–100, 2016.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, 2021.
S. D. Nirwana, M. I. Jambak, and A. Bardadi, “Perbandingan Algoritma K-Means Dan K-Medoids Dalam Clustering Rata-Rata Penambahan Kasus Covid-19 Berdasarkan Kota/Kabupaten Di Provinsi Sumatera Selatan,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 2, pp. 126–131, 2022, doi: 10.30656/jsii.v9i2.5127.
F. Faisal, L. A. Giopani, M. Fitriah, Z. C. Dwynne, and S. Syahidatul, “Comparison of K-Means and K-Medoids Algorithms for Temperature Grouping in Riau Province Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokan Suhu di Provinsi Riau,” IJIRSE Indones. J. Inform. Res. Softw. Eng., vol. 2, no. 2, pp. 128–134, 2022.
R. K. Purba and E. Bu’ulolo, “Implementasi Algoritma K-Medoids dalam Pengelompokan Mahasiswa yang Layak Mendapat Bantuan Uang Kuliah Tunggal,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 2, pp. 79–86, 2022, doi: 10.55123/insologi.v1i2.195.
D. R. Agustian and B. A. Darmawan, “Analisis Clustering Demam Berdarah Dengue Dengan Algoritma K-Medoids (Studi Kasus Kabupaten Karawang),” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, p. 18, 2022, doi: 10.26798/jiko.v6i1.504.
F. Y. Rahman, I. I. Purnomo, and N. Hijriana, “PENERAPAN ALGORITMA DATA MINING UNTUK KLASIFIKASI KUALITAS AIR,” Technologia, vol. 13, no. 3, pp. 228–232, 2022.
M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Creat. Inf. Technol. J., vol. 4, no. 2, p. 151, 2018, doi: 10.24076/citec.2017v4i2.106.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Eeccis, vol. 7, no. 1, pp. 59–64, 2013, doi: 10.1038/hdy.2009.180.
K. Tampubolon, H. Saragih, B. Reza, K. Epicentrum, A. Asosiasi, and A. Apriori, “Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-Alat Kesehatan,” pp. 93–106, 2013.
N. Y. Septian, “Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro,” J. Semant. 2013, pp. 1–11, 2009.
P. Mayadewi and E. Rosely, “Prediksi Nilai Proyek Akhir Mahasiswa Menggunakan Algoritma Klasifikasi Data Mining,” Semin. Nas. Sist. Inf. Indones., no. November, pp. 329–334, 2015.
A. Sastika and Y. Syahra, “Penerapan Data Mining Untuk Pengelompokkan Data Kebutuhan Beras Karyawan Dengan Menggunakan Metode K-Medoids,” vol. 1, no. 2, pp. 377–387, 2018.
F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “PENERAPAN METODE K-MEDOIDS CLUSTERING PADA PENANGANAN KASUS DIARE DI INDONESIA,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 598–603, 2019.
S. Theresia, Suhada, I. S. Saragih, I. S. Damanik, and D. Suhendro, “Pengklasteran Gaji Karyawan Pada Pt . Erba Primas Bogor,” vol. 4, pp. 395–402, 2020, doi: 10.30865/komik.v4i1.2852.
M. Minarni, E. I. Sari, A. Syahrani, and P. Mandarani, “Klasterisasi Penyakit Menggunakan Algoritma K-Medoids pada Dinas Kesehatan Kabupaten Agam,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 3, p. 137, 2021, doi: 10.23887/janapati.v10i3.34904.
G. B. Kaligis and S. Yulianto, “Analisa Perbandingan Algoritma K-Means, K-Medoids, Dan X-Means Untuk Pengelompokkan Kinerja Pegawai,” IT-Explore J. Penerapan Teknol. Inf. dan Komun., vol. 1, no. 3, pp. 179–193, 2022, doi: 10.24246/itexplore.v1i3.2022.pp179-193.
M. A. Wirayoga, “The Relationship between Dengue Hemorrhagic Fever and Climate in Semarang From 2006 to 2011,” Unnes J. Public Heal., vol. 2, no. 4, pp. 1–9, 2013.
J. Blanc, “Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces,” Indiana Univ. Math. J., vol. 62, no. 4, pp. 1143–1164, 2013, doi: 10.1512/iumj.2013.62.5040.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Metode K-Medoids Clustering Pada Penanganan Kasus Demam Berdarah
Pages: 139-146
Copyright (c) 2023 Soeb Aripin, Timotius Gulo, Gebi Putri Novita Sari Perangin Angin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).













