Pencarian Rute Terpendek Dalam Pendistribusian Darah di Palang Merah Indonesia (PMI) dengan Algoritma Dijkstra
Abstract
The Indonesian Red Cross (PMI) is an independent and neutral organization in Indonesia engaged in humanitarian activities. One of the departments within the Indonesian Red Cross is the blood donor unit. The Blood Donor Unit (UDD) of PMI Deli Serdang is one of the Indonesian Red Cross offices in the Deli Serdang district, which deals with social humanitarian activities such as blood donation, volunteer recruitment, emergency response, and others. One common issue in blood distribution is the numerous routes that need to be taken, resulting in wasted time and delayed blood deliveries. Due to this issue, the implementation of artificial intelligence is needed to determine the shortest route for optimal and fast blood delivery. The application of artificial intelligence in problem-solving in the field of computer science has seen rapid development over the years in line with the advancement of artificial intelligence itself. In determining the shortest route, several algorithms can be used, one of which is the Dijkstra algorithm. It is used to solve problems in a graph to determine the shortest route. In the process, the Dijkstra algorithm determines the points that will become the distance weights connected from one point to another, resulting in the desired nodes. Therefore, an application is needed to find the nearest route to make blood delivery more time-efficient. In manual calculations using the algorithm, it was found that the shortest route from UDD (PMI Deli Serdang Blood Donation Unit) to GM (Grand Medistra Hospital) is through the route UDD → A → B → C → D → GM = 0 + 300 m + 250 m + 1,500 m + 35 m + 90 m with a total distance of 2,175 meters or 2.1 kilometers in 5 minutes. Thus, the use of the Dijkstra algorithm can assist in determining the fastest and optimal route for blood distribution, saving time and improving delivery efficiency.
Downloads
References
Asmawati S, S.Kom., M.Pd., Nazaruddin Ahmad, M.T., Rika Ismayanti, S.Kom., M.Kom, Welda, S.Kom., M.T.I., Dr. Muhammad Ramdhan Olii, S.T., M.Eng., Nurfaizah, M.Kom., Rifaldo Pido, S.T., M.T., Andi Yulia Muniar, S.Si., M.T., Nur Syamsiyah, S.T., M.T.I., Fah, M. K. (2022). Sistem Pendukung Keputusan (M. K. Dudih Gustian, S.T. (ed.)). Media Sains Indonesia. https://www.google.co.id/books/edition/Sistem_Pendukung_Keputusan/DB9ZEAAAQBAJ?hl=id&gbpv=0
Budihartono, E. (2016). Penerapan Algoritma Dijkstra Untuk Sistem Pendukung Keputusan Bagi Penentuan Jalur Terpendek Pengiriman Paket Barang Pada Travel. Senit, 69–78. https://ejournal.poltektegal.ac.id/index.php/prosiding/article/viewFile/360/344
Buleleng, A. (2021). Kenali Manfaat Rutin Donor Darah bagi Kesehatan. Buleleng.Bulelengkab.Go.Id. https://buleleng.bulelengkab.go.id/informasi/detail/artikel/35-kenali-manfaat-rutin-donor-darah-bagi-kesehatan
Dewi, L. J. E. (2010). Pencarian Rute Terpendek Tempat Wisata Di Bali Dengan Menggunakan Algoritma Dijkstra. Seminar Nasional Aplikasi Teknologi Informasi 2010 (SNATI 2010), 2010(Snati), 46–49.
Furqan, M., Nasution, Y. R., & Nurdianti, T. S. (2021). Penerapan Algoritma Greedy Untuk Menentukan Rute Terpendek Antar Klinik Gigi. CSRID (Computer Science Research and Its Development Journal), 12(3), 170. https://doi.org/10.22303/csrid.12.3.2020.170-178
Girsang, A. S. (2017). Algoritma Dijkstra. https://mti.binus.ac.id/2017/11/28/algoritma-dijkstra/
Harahap, M. K., & Khairina, N. (2017). Pencarian Jalur Terpendek dengan Algoritma Dijkstra. SinkrOn, 2(2), 18. https://doi.org/10.33395/sinkron.v2i2.61
Harsadi, P., & Nugroho, D. (2020). Implementasi Algoritma Dijkstra Dan Metode Haversine Pada Penentuan Jalur Terpendek Pendakian Gunung Merapi Jalur Selo Berbasis Android. Jurnal Teknologi Informasi Dan Komunikasi (TIKomSiN), 8(1), 61–67. https://doi.org/10.30646/tikomsin.v8i1.483
Haviluddin. (2011). Memahami Penggunaan UML ( Unified Modelling Language ). Memahami Penggunaan UML (Unified Modelling Language), 6(1), 1–15. https://informatikamulawarman.files.wordpress.com/2011/10/01-jurnal-informatika-mulawarman-feb-2011.pdf
Hidayat, F. (2020). Konsep Dasar Sistem Informasi Kesehatan. Deepublish. https://books.google.co.id/books?id=dJfwDwAAQBAJ&dq=konsep+dasar+sistem&lr=&hl=id&source=gbs_navlinks_s
Mahendra, Y. D., Nuryanto, N., & Burhanuddin, A. (2019). Sistem Penentuan Jarak Terdekat Dalam Pengiriman Darah Di Pmi Kota Semarang Dengan Metode Algoritma Greedy. Jurnal Komtika, 2(2), 136–142. https://doi.org/10.31603/komtika.v2i2.2601
R, W. E. Y., Istiadi, D., & Roqib, A. (2015). Pencarian Spbu Terdekat Dan Penentuan Jarak Terpendek Menggunakan Algoritma Dijkstra. Jurnal Nasional Teknik Elektro, 4(1), 89–93.
Rafi, F. M. (2020). Aplikasi Informed dan Uninformed Search Dalam Penentuan Rute Liburan Keluarga. Sekolah Teknik Elektro Dan Informatika Institut Teknologi Bandung.
Ramadhan, A. W. R., & Udjulawa, D. (2020). Perbandingan Algoritma Dijkstra dan Algoritma A Star pada permainan Pac-Man. Jurnal Algoritme, 1(1), 12–20. https://doi.org/10.35957/algoritme.v1i1.411
Ratnasari, A., Ardiani, F., & A, F. N. (2013). Penentuan Jarak Terpendek dan Jarak Terpendek Alternatif Menggunakan Algoritma Dijkstra Serta Estimasi Waktu Tempuh. Semantik 2013, 3(1), 29–34.
Ruddell, B. L., & Kumar, P. (2005). Unified modeling language. Hydroinformatics: Data Integrative Approaches in Computation, Analysis, and Modeling, 10, 9–20. https://doi.org/10.4018/jdm.2001010103
yogi ardhi, F. carolio. (2021). In Picture: Kebutuhan Kantong Darah PMI Medan di Masa PPKM Menurun. Republika.Co.Id. https://www.republika.co.id/berita/qz2kzs314/kebutuhan-kantong-darah-pmi-medan-di-masa-ppkm-menurun#:~:text=Kebutuhan stok darah di kota Medan sebanyak 5.500-6.000 kantong,7%2F9%2F2021).
Yulita Molliq Rangkuti, Said Iskandar Al Idrus, D. D. T. (2021). Pengantar Pemrograman Python. Media Sains Indonesia. https://www.google.co.id/books/edition/Pengantar_Pemrograman_Python/2ftLEAAAQBAJ?hl=id&gbpv=0
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Pencarian Rute Terpendek Dalam Pendistribusian Darah di Palang Merah Indonesia (PMI) dengan Algoritma Dijkstra
Pages: 727-738
Copyright (c) 2024 Catur Hidayatullah, Rakhmat Kurniawan R, Armansyah Armansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).