Implementasi K-Means Clustering dalam Mengklasifikasi Pengaruh Les Terhadap Prestasi Siswa dengan Metode Elbow


  • Alief Fathul Habibie * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Rakhmat Kurniawan R Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: The Influence of Tutoring; Clustering; K-Means; Extracurricular Activities

Abstract

Student achievement and ability are very important perspectives to consider. In this regard, Madrasah Ibtidaiyah Swasta (MIS) Al-Falah Medan is an educational institution that has a good reputation in both religious and other sciences. This study aims to analyze the influence of tutoring on student achievement at Madrasah Ibtidaiyah Swasta (MIS) Al-Falah Medan using the K-Means Clustering method and the Elbow technique to determine the optimal number of clusters. The data used in this research involves 514 students from classes 1A to 6B, with the analyzed variables including semester exam scores, participation in additional tutoring, and extracurricular activities. The analysis results show that students who participate in additional tutoring have higher average scores compared to those who do not. The average score of students in the semester exams is 87.71, while the average score for students participating in tutoring and extracurricular activities is 87.12. The clustering process results in four groups of students, with the highest performing group in cluster 2, while the lowest performing groups are in clusters 3 and 4. This research provides important information for the school in understanding the impact of tutoring on students' academic performance and can be used to improve learning strategies at MIS Al-Falah Medan.

Downloads

Download data is not yet available.

References

A. P. Riani, A. Voutama, and T. Ridwan, “Penerapan K-Means Clustering Dalam Pengelompokan Hasil Belajar Peserta Didik Dengan Metode Elbow,” J-SISKO TECH, vol. 6, no. 1, pp. 164, 2023, doi: 10.53513/jsk.v6i1.7351.

H. Pancawardana, I. I. Al Ayyubi, R. Rohmatulloh, and M. Murharyana, “The Influence of Nonformal Education on Students’ Cognitive Formation,” Kolok. J. Pendidik. Luar Sekol., vol. 11, no. 2, pp. 236–243, 2023, doi: 10.24036/kolokium.v11i2.612.

N. A. Agustin, Kanom, and R. N. Darmawan, “Tingkat Minat Belajar Siswa Kelas IX SMPN 11 Kota Sungai Penuh,” J. Inov. Penelit., vol. 1, no. 3, pp. 1–4, 2020, doi: 10.47492/jip.v1i11.496

S. Nurhayati, H. Anggidesialamia, D. Suryadi, and M. I. Fasa, “Reading Review Program as an Innovative Effort to Increase Community’s Reading Interest,” vol. 491, no. Ijcah, pp. 184–190, 2020, doi: 10.2991/assehr.k.201201.032.

A. A. Maiyanti and U. F. Laili, “Pengaruh Bimbingan Belajar (Les di Luar Sekolah) Pada Prestasi Belajar IPA Siswa Kelas VIIII MTs Jabal Noer Geluran Sidoarjo,” J. Pendidik. Sains dan Komput., vol. 2, no. 01, pp. 30–40, 2022, doi: 10.47709/jpsk.v2i01.1350.

Z. S. Barly, F. F. Coastera, and M. Yusa, “Implementasi K-Means Clustering Dan Cosine Similarity Pada Case Base Reasoning Untuk Diagnosa Penyakit Sapi,” Pseudocode, vol. 9, no. 2, pp. 88–94, 2022, doi: 10.33369/pseudocode.9.2.88-94.

M. Ulfah and A. Sri Irtwaty, “Penerapan Data Mining Clustering Menggunakan Metode K-Means Dalam Pengelompokan Buku Perpustakaan Politeknik Negeri Balikpapan,” Fidel. J. Tek. Elektro, vol. 4, no. 3, pp. 62–68, 2022, doi: 10.52005/fidelity.v4i3.126.

N. T. Hartanti, “Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 82–89, 2020, doi: 10.25077/teknosi.v6i2.2020.82-89.

F. P. Dewi, P. S. Aryni, and Y. Umaidah, “Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran,” JISKA, vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.

S. Ningsih and A. Dhieka Lantana, “Design Aplikasi Kinerja Dosen Pada Unit Penjaminan Mutu Fakultas Menggunakan Algoritma K-Means Clustering Berbasis Phyton,” IBI Kosgoro, vol. 4, no. 1, pp. 23–33, 2023, doi: 10.55122/junsibi.v4i1.693.

K. Neighbours, “Pengenalan Pola untuk Identifikasi Jenis Kain Tenun Sibolga Menggunakan Metode Principal Component Analysis,” vol. 5, no. 4, pp. 796–805, 2024, doi: 10.47065/josyc.v5i4.

S. J. Arditna and R. Kurniawan, “Prediksi Harga Tandan Buah Segar dengan Algoritma K-Nearest Neighbor,” J. Sist. Komput. dan Inform., vol. 5, no. 1, pp. 92–101, 2023, doi: 10.30865/json.v5i1.6818.

M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING, vol. 8, no. 1, pp. 56, 2023, doi: 10.30998/string.v8i1.16388.

R. P. Kurniawan and Ferdiansyah, “Penerapan Algoritme K-Means Clustering Untuk Mengelompokkan Siswa Berdasarkan Nilai Akademik Di SMP Negeri 207 SSN,” Pros. Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 530–538, 2023.

A. A. Muhartini, T. Febriati, and S. Sukmawati, “Analisis Cluster Untuk Mengelompokkan Penggunaan Kartu Perdana Seluler Di Universitas Bina Bangsa,” J. Bayesian J. Ilm. Stat. dan Ekon., vol. 2, no. 1, pp. 15–30, 2022, doi: 10.46306/bay.v2i1.25.

D. O. Dacwanda and Y. Nataliani, “Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan,” Aiti, vol. 18, no. 2, pp. 125–138, 2021, doi: 10.24246/aiti.v18i2.125-138.

A. Harmain, H. Kurniawan, D. Maulina, and M. Universitas Amikom Yogyakarta, “Data Normalization for K-Means Efficiency on Groups of Areas With Potential Forest and Land Fire Based on Heat Spots Distribution,” Teknimedia, vol. 2, no. 2, pp. 83–89, 2021, doi: 10.46764/teknimedia.v2i2.49

D. A. Ofori et al., “Beauty and Skincare E-Commerce Mobile Application with Advanced Searching Module Using Image Processing,” Molecules, vol. 2, no. 1, pp. 1–12, 2020.

S. Butsianto and N. Saepudin, “Penerapan Data Mining Terhadap Minat Siswa Dalam Mata Pelajaran Matematika Dengan Metode K-Means,” J. Nas. Komputasi dan Teknol. Inf., vol. 3, no. 1, pp. 51–59, 2020, doi: 10.32672/jnkti.v3i1.2008.

A. W. Chandra, R. Primartha, A. Desiani, and A. Wijaya, “The Effect of Preliminary Centroid Determination Using Particle Swarm Optimization Algorithm in High Dimension Data Clustering,” vol. 172, no. Siconian 2019, pp. 347–352, 2020, doi: 10.2991/aisr.k.200424.052.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi K-Means Clustering dalam Mengklasifikasi Pengaruh Les Terhadap Prestasi Siswa dengan Metode Elbow

Dimensions Badge
Article History
Submitted: 2024-11-05
Published: 2024-11-22
Abstract View: 49 times
PDF Download: 34 times
Section
Articles