Decision Tree C4.5 dengan Teknik Information Gain Untuk Klasifikasi Pemilihan Program Studi Tingkat Lanjut
Abstract
The aim of this research is to analyze the application of informative features, classify data based on academic features, interests and talents with Information Techniques using Decision Tree C4.5. The aim of this research is to conduct research on students in determining the choice of study program to continue their education to college, because in choosing a study program to continue their education to college, students often experience difficulties in determining which study program they will choose. The research collected 140 student data, by distributing questionnaires to prospective new students and asking the school for students' academic scores, the author has 140 data that will be used in this research. Next, from the 140 data, researchers will divide it into two parts, namely 118 training data and 22 testing data to meet the needs in designing the model. Based on the results of research conducted using the Supervised Learning Decision Tree C4.5 approach and applying the Information Gain technique for classification of advanced study program selection, an accuracy of 86% was obtained. This success rate shows that the method is effective in identifying and classifying advanced study programs. This indicates that the use of Decision Tree C4.5 which utilizes the Information Gain technique has great potential as a model that can assist students in choosing their advanced study program with a satisfactory level of accuracy. With high accuracy results, this method can be relied on to provide accurate predictions in the context of study program selection.
Downloads
References
Reynaldo, B. Mulyawan, and T. Sutrisno, “Rekomendasi Pemilihan Program Studi Tarumangara Menggunakan Metode,” J. Komput. dan Inform., vol. 15, no. 1, pp. 326–333, 2020.
P. D. Kusuma, Machine Learning Teori,Program,Dan Studi Kasus. Jl.Rajawali, G.Elang 6, No 3, Drono, Sardonoharjo,Ngaglik, Sleman Jl.Kaliurang Km.9,3-Yogyakarta 55581: Grup Penerbitan CV BUDI UTAMA, 2020.
A. Yuliana and D. B. Pratomo, “Memprediksi Kepuasan Mahasiswa Terhadap Kinerja Dosen Politeknik TEDC Bandung,” Semnasinotek 2017, pp. 377–384, 2017.
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.
Dhea Halimah, Muhammad Ridwan Lubis, and Widodo Saputra, “Algoritma C4.5 Untuk Menentukan Klasifikasi Tingkat Pemahaman Mahasiswa Pada Matakuliah Bahasa Pemrograman,” J. Tek. Mesin, Ind. Elektro Dan Inform., vol. 1, no. 3, pp. 24–38, 2022, doi: 10.55606/jtmei.v1i3.534.
D. Hartama and K. D. R. Sianipar, “Penerapan Algoritma C4.5 Untuk Analisa Tingkat Keberhasilan Mahasiswa Dalam Pembelajaran Praktikum di Masa Pandemi,” J. Comput. Syst. Informatics, vol. 4, no. 1, pp. 128–134, 2022, doi: 10.47065/josyc.v4i1.2584.
E. E. Barito, J. T. Beng, and D. Arisandi, “Penerapan Algoritma C4.5 Untuk Klasifikasi Mahasiswa Penerima Bantuan Sosial Covid-19,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, 2022, doi: 10.24912/jiksi.v10i1.17819.
F. F. Kusuma, “Penerapan Data Mining Untuk Akurasi Analisis Cuaca di Australia Menggunakan Algoritma J48 Decision Tree,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 3, no. 2, pp. 65–68, 2023, doi: 10.53514/jco.v3i2.396.
A. Baktiar, “Decission Tree Sebagai Metode Penentuan Penjurusan Perguruan Tinggi Berdasarkan Minat Dan Bakat Melalui Data Raport Dengan Uji Algoritma C4.5 (Studi Kasus di SMKN 1 Donorojo Pacitan),” J. PILAR Teknol. J. Ilm. Ilmu Ilmu Tek., vol. 7, no. 1, pp. 40–45, 2022, doi: 10.33319/piltek.v7i1.110.
M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indon[1] M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, ‘Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),’ Paradig. - J. Komput. dan Inform., vol.,” Paradig. - J. Komput. dan Inform., vol. 23, no. 2, 2021.
R. Haqmanullah Pambudi and B. Darma Setiawan, “Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2637–2643, 2018.
E. D. Sri mulyani, I. Agustina, R. Ismanto, S. J. Susanto, S. S. Adhi, and T. S. Rismayanti, “Klasifikasi Pola Penjurusan Bidang It Menggunakan Algoritma C4.5 Studi Kasus Smkn Manonjaya,” TEKTRIKA - J. Penelit. dan Pengemb. Telekomun. Kendali, Komputer, Elektr. dan Elektron., vol. 6, no. 1, p. 1, 2022, doi: 10.25124/tektrika.v6i1.2254.
R. A. Saputra, S. Wasiyanti, and D. Pribadi, “Information Gain Pada Algoritma C4.5 Untuk Klasifikasi Penerimaan Bantuan Pangan Non Tunai (Bpnt),” Indones. J. Bus. Intell., vol. 4, no. 1, p. 25, 2021, doi: 10.21927/ijubi.v4i1.1757.
R. Triyandika, “Penerapan Metode Decision Tree Dengan Algoritma C4.5 Untuk Klasifikasi Penyakit Jantung,” p. 1, 2022.
A. F. A. Rahman, Sorikhi, and S. Wartulas, “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus Di Universitas Peradaban),” Ijir, vol. 1, no. 2, pp. 70–77, 2020.
M. A. Abdillah, A. Setyanto, and S. Sudarmawan, “Implementasi Decision Tree Algoritma C4.5 Untuk Memprediksi Kesuksesan Pendidikan Karakter,” Respati, vol. 15, no. 2, p. 59, 2020, doi: 10.35842/jtir.v15i2.349.
M. Solehuddin, W. A. Syafei, and R. Gernowo, “Metode Decision Tree untuk Meningkatkan Kualitas Rencana Pelaksanaan Pembelajaran dengan Algoritma C4.5,” J. Penelit. dan Pengemb. Pendidik., vol. 6, no. 3, pp. 510–519, 2022, doi: 10.23887/jppp.v6i3.52840.
U. Enri, “Penerapan Algoritma C4.5 Dalam Pemilihan Program Studi Fakultas Ilmu Komputer (Studi Kasus Sekolah Menengah Atas Negeri 1 Tambun Utara),” J. Rekayasa Inf., vol. 7, no. 1, pp. 1–7, 2018.
P. P. Haryoto, H. Okprana, and I. S. Saragih, “Algoritma C4.5 Dalam Data Mining Untuk Menentukan Klasifikasi Penerimaan Calon Mahasiswa Baru,” TIN Terap. Inform. Nusant., vol. 2, no. 5, pp. 358–364, 2021.
Suherman, M. Purnamasari, and F. D. Hastuti, “Klasifikasi Siswa Berdasarkan Mata Pelajaran Lintas Minat Menggunakan Metode Decision Tree C4.5,” J. Sist. Inf., vol. 8, no. 08, pp. 141–149, 2021.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Decision Tree C4.5 dengan Teknik Information Gain Untuk Klasifikasi Pemilihan Program Studi Tingkat Lanjut
Pages: 1042-1052
Copyright (c) 2024 Teddy Yogi Pratama, Armansyah Armansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).