Implementasi Metode Random Forest Untuk Memprediksi Jumlah Penjualan Gorden Berdasarkan Data Historis
Abstract
The rapid development of information technology has encouraged companies, including Tova Gorden, a small business engaged in curtain sales, to adopt technology to improve operational efficiency and competitiveness. Tova Gorden often faces obstacles in fulfilling orders, especially when demand suddenly increases, which is exacerbated by limited stock, raw material difficulties (such as smokers), fabric pre-order systems, and time-consuming production processes. Determining stock that is still based on employee estimates often leads to inefficiencies in the form of shortages or excesses of goods. This condition highlights the urgent need for an accurate prediction system to optimize inventory management. This study aims to implement and test the performance of the Random Forest algorithm, which is an ensemble learning method, to predict the number of curtain sales based on historical sales data. The collected data includes historical information related to curtain sales, including sales weeks, curtain motifs, and sales volumes. Unlike previous studies that generally use Linear Regression and focus on products with stable sales patterns, this study applies Random Forest to address more fluctuating curtain demand patterns. This research method includes several stages, namely Data Collection, Exploratory Data Analysis (EDA), Data Preprocessing, Data Splitting (70% training, 15% validation, 15% testing), Modeling with Random Forest, Evaluation, and Deployment. The evaluation results show that the model has excellent performance, with a coefficient of determination (R²) value of 97.83% on training data, 93.72% on validation data, and 96.64% on test data. Furthermore, the model is integrated into a web-based system using the Flask framework. This system is equipped with data upload features, prediction processes and curtain category grouping, and presentation of model evaluation results.
Downloads
References
L. P. Arista and Y. S. Nugroho, “Sistem Informasi Pencatatan Transaksi Penjualan Dan Pembelian Produk Berbasis Website Di Toko Sembako Putrasena Sukoharjo,” J. Inform. Polinema, vol. 9, no. Sistem Informasi Pencatatan Transaksi Penjualan Dan Pembelian Produk Berbasis Website Di Toko Sembako Putrasena Sukoharjo, pp. 397–404, 2023, doi: 10.33795/jip.v9i4.1347.
B. A. Sekti, A. P. Gusti, and N. Erzed, “Perancangan Sistem Informasi Stok Barang berbasis Web dengan Metode FIFO,” J. Teknol. Inform. dan Komput., vol. 10, no. 2, pp. 506–518, 2024, doi: 10.37012/jtik.v10i2.2253.
A. Afandi, I. N. Farida, and U. Mahdiyah, “Penerapan Algoritma Apriori Dan Metode Moving Average Untuk Prediksi Stok Barang,” Pros. SEMNAS INOTEK (Seminar Nas. Inov. Teknol., vol. 6, no. 2, pp. 421–426, 2022, doi: https://doi.org/10.29407/inotek.v6i2.2624.
P. K. Andini, A. Indrawan, and E. Martaseli, “Analisis Sistem Pengendalian Internal Atas Persediaan Barang Dagang (Sparepart) Dalam Upaya Mempertahankan Laba Pada PT. Selamat Lestari Mandiri,” Akunt. 45, vol. 5, no. 2, pp. 643–656, 2024, doi: 10.30640/akuntansi45.v5i2.3386.
S. Ristayanti, I. Shalshabilla, R. A. Rachmawan, and D. E. Susilo, “Analisis Peran Sistem Informasi Dalam Meningkatkan Efektivitas Pengendalian Persediaan Barang Dagang Pada PT. Mayora Indah Tbk.,” JASIKA (Jurnal Sist. Inf. Akuntansi), vol. 04, no. 02, pp. 74–82, 2024, doi: https://doi.org/10.31294/jasika.v4i2.3757.
G. N. Ayuni and D. Fitrianah, “Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, pp. 79–86, 2020, doi: 10.61769/telematika.v14i2.321.
J. Luo and Y. Shen, “Optimization of Random Forest Algorithm and Research on the Effectiveness of its Application in Stock Index Forecasting,” J. Comb. Math. Comb. Comput., vol. 127b, no. April 2024, pp. 9557–9571, 2025, doi: 10.61091/jcmcc127b-523.
D. Manurung, B. Zealtiel, and A. H. Lubis, “Prediksi Produksi Tanaman Padi di Indonesia dengan Menggunakan Algoritma Random Forest Regressor,” J. Comput. Informatics Res., vol. 4, no. 3, pp. 337–345, 2025, doi: 10.47065/comforch.v4i3.2125.
R. Hidayat et al., “Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produksi di Supermarket,” Simkom, vol. 10, no. 1, pp. 101–109, 2025, doi: 10.51717/simkom.v10i1.703.
R. Verdiyanto, D. Hartanti, and E. Purwanto, “Pengembangan Aplikasi Point of Sales untuk Prediksi Penjualan Harian Usaha Minuman Menggunakan Algoritma Random Forest Regression,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 128–139, 2025, doi: 10.29408/jit.v8i1.28386.
A. Ridwan, U. Muzakir, and S. Nurhidayati, “Optimizing E-commerce Inventory to prevent Stock Outs using the Random Forest Algorithm Approach,” Int. J. Softw. Eng. Comput. Sci., vol. 4, no. 1, pp. 107–120, 2024, doi: 10.35870/ijsecs.v4i1.2326.
M. Ismail, H. M. Tukur, and M. Friday, “Sales Prediction using Ensemble Machine Learning Model,” Int. J. Sci. Res. Mod. Technol., vol. 4, no. 3, pp. 24–35, 2025, doi: https://doi.org/10.38124/ijsrmt.v4i3.350.
M. A. M. Setiawan, K. Kusrini, and A. D. Hartono, “Menggunakan Metode Machine Learning Untuk Memprediksi Nilai Mahasiswa Dengan Model Prediksi Multiclass,” J. Inform. J. Pengemb. IT, vol. 10, no. 1, pp. 190–204, 2025, doi: 10.30591/jpit.v10i1.8334.
N. Nurdiansyah, F. S. Febriyan, Z. Gesit, and D. Amanta, “Mental Health Analysis to Prevent Mental Disorders in Students Using The K-Nearest Neighbor ( K-NN ) Algorithm and Random Forest Algorithm Analisis Kesehatan Mental untuk Mencegah Gangguan Mental pada Mahasiswa Menggunakan Algoritma K-Nearest Neighbor ( K,” Inst. Ris. dan Publ. Indones., vol. 5, no. January, pp. 1–9, 2025, doi: https://doi.org/10.57152/malcom.v5i1.1537.
A. Roni and Y. Amri, “Sentimen Analisis Aplikasi Posaja Pada Google Playstore Untuk Peningkatan Pospay Superapp Menggunakan Support Vector Meachine,” J. Tek. Inform., vol. 16, no. 2, pp. 1–7, 2024, [Online]. Available: https://ejurnal.ulbi.ac.id/index.php/informatika/article/view/3533
H. Tantyoko, D. K. Sari, and A. R. Wijaya, “PREDIKSI POTENSIAL GEMPA BUMI INDONESIA MENGGUNAKAN METODE RANDOM FOREST DAN FEATURE SELECTION,” Indones. J. Inf. Syst., vol. 6, pp. 83–89, 2023, doi: https://doi.org/10.36080/idealis.v6i2.3036.
H. Imaduddin, W. Widayat, and F. Y. A’la, “Classification of Diabetes using Machine Learning,” 2021 Int. Conf. Comput. Perform. Eval. ComPE 2021, pp. 185–189, 2021, doi: 10.1109/ComPE53109.2021.9751955.
H. P. Khandagale, R. Patil, S. Patil, and D. Bhosale, “Predicting Stock Prices With Machine Learning Using Comparative Analysis of Random Forest Algorithm,” Int. J. Eng. Appl. Sci. Technol., vol. 8, no. 6, pp. 60–68, 2023, doi: 10.33564/ijeast.2023.v08i06.008.
Z. Sun, “The Approaches to Predict Stock Prices by Random Forest,” Appl. Comput. Eng., vol. 96, no. 1, pp. 162–168, 2024, doi: 10.54254/2755-2721/96/20241333.
R. W. Wilda, M. A. Sukmarini, and A. C. Mahar, “Prediksi Harga Saham PT. Unilever Indonesia TBK Dengan Metode Regresi Linier Sederhana,” Balanc. Media Inf. Akunt. dan Keuang., vol. 16, no. 2, pp. 76–81, 2024, doi: 10.52300/blnc.v16i2.14249.
N. Yulis, M. A. Anhar, and A. S. Rombe, “Analisis Perbandingan Peramalan Penggunaan Bahan Baku Menggunakan Metode Weighted Moving Average ( WMA ) dan Evaluasi dengan Mean Absolute Error ( MAE ),” Pros. Semin. Ilm. Sist. Inf. DAN Teknol. Inf., vol. XIV, no. 1, pp. 57–64, 2025, doi: https://doi.org/10.36774/sisiti.v14i1.1675.
F. Putra, Susanti, Herwin, Kh. Andesa, and Mardainis, “Prediksi Nilai Redaman Jaringan Fiber Optik untuk Menilai Kinerja Jaringan Menggunakan Random Forest Regression,” Indones. J. Comput. Sci., vol. x, no. x, pp. 3347–3361, 2025, doi: https://doi.org/10.33022/ijcs.v14i2.4796 Prediksi.
C. Wijayanto and Y. A. Susetyo, “Implementasi flask framework pada pembangunan aplikasi sistem informasi helpdesk (sih),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 07, no. September, pp. 858–868, 2022, doi: 10.29100/jipi.v7i3.3161.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Metode Random Forest Untuk Memprediksi Jumlah Penjualan Gorden Berdasarkan Data Historis
Pages: 371-381
Copyright (c) 2026 Amiladito Adhyatma Wijanarko, Helmi Imaduddin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















