Implementasi Arsitektur CNN untuk Klasifikasi dan Identifikasi Penyakit Daun Tanaman Padi


  • Helmy Purnomo Hidayat Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • Helmi Imaduddin * Mail Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
  • (*) Corresponding Author
Keywords: Convolutional Neural Network (CNN); Deep Learning; Plant Disease Identification; Digital Image Classification; Rice Leaf Disease; Detection System

Abstract

Leaf diseases in rice plants are a serious threat that can reduce productivity and crop quality, thus directly impacting national food security. Farmers still face various obstacles in identifying diseases conventionally, especially in the early stages of infection which can potentially cause delays in treatment. This study aims to develop a Deep Learning-based rice leaf disease classification system by building a Convolutional Neural Network (CNN) architecture independently (from scratch). The dataset used includes 18,445 rice leaf images categorized into ten disease classes, with an allocation of 70% training data, 15% validation data, and 15% test data. All images were resized to 224×224 pixels before being input into the model. Data augmentation was applied to prevent overfitting by rotation (20°), horizontal and vertical shifts (15%), shear (15%), zoom (15%), horizontal flip, and brightness variations (0.8-1.2). The CNN model was designed using five convolution blocks with cascaded filter configurations (32, 64, 128, 256, 512) using a 3×3 kernel and equipped with Batch Normalization, MaxPooling2D, and Dropout. The model was compiled using the Adam optimizer with a learning rate of 0.0001, a categorical cross-entropy loss function, and ReLU and Softmax activation functions. The training process used a batch size of 8 equipped with EarlyStopping and ReduceLROnPlateau callbacks. The experimental results showed that training with 75 epochs produced optimal performance with an accuracy of 97.91%, a precision of 0.9792, a recall of 0.9791, and an F1-score of 0.9790 on the test data. Evaluation per class showed that the Bacterial Leaf Blight and Tungro classes achieved perfect accuracy (100%), while Leaf Blast had the lowest accuracy (93.8%) due to its visual similarity to Brown Spot. The best model was implemented into a web system called Pariku using the Flask framework, which provides automatic diagnosis features, prediction confidence levels, and Integrated Pest Management (IPM)-based treatment recommendations.

Downloads

Download data is not yet available.

References

Dewi Pitriana, Hery Haryanto, and Kisman, “Evaluasi Penerapan Pengendalian Hama Terpadu Petani Padi (Oryza sativa) dalam Program P4 di Kabupaten Lombok Barat,” J. Ilm. Mhs. Agrokomplek, vol. 4, no. 1, pp. 146–154, Apr. 2025, doi: 10.29303/jima.v4i1.6587.

T. H. Masitah, S. Y. Lubis, and R. Harahap, “Analisis Faktor Sosial Dan Ekonomi Yang Mempengaruhi Pendapatan Petani Padi Organik,” J. Ilman J. Ilmu Manaj., vol. 11, no. 3, pp. 8–15, Oct. 2023, doi: 10.35126/ilman.v11i3.532.

M. Yustika and E. Marbun, “Pelestarian plasma nutfah padi untuk mendukung ketahanan pangan beras Indonesia,” J. Crit. Ecol., vol. 1, no. 2, pp. 52–59, 2024, doi: https://doi.org/10.61511/jcreco.v1i2.1170.

Z. He, Z. Zhang, G. Valè, B. S. Segundo, X. Chen, and J. Pasupuleti, “Editorial : Disease and pest resistance in rice,” Front. Plant Sci., vol. 14, no. 1, pp. 1–3, 2023, doi: 10.3389/fpls.2023.1333904.

M. Deden, M. Fauzi, T. Al Mudzakir, C. E. Sukmawati, and J. Indra, “Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 39–48, 2024, doi: 10.30865/klik.v5i1.2009.

D. Wahyudi, F. Liantoni, N. Pradana, and T. Prakisya, “Identifikasi Penyakit Daun pada Tanaman Padi Menggunakan Ekstraksi Fitur Gray Level Co-occurrence Matrix ( GLCM ) dan Metode K-Nearest Neighbour ( KNN ),” J. Sist. dan Teknol. Inf., vol. 12, no. 1, pp. 100–106, 2024, doi: 10.26418/justin.v12i1.69752.

P. Novantara, R. L. Firmansyah, and Marrilyn Arismawati, “Deteksi Hama Penyakit Daun Padi Dengan Menggunakan Teknik Optimasi Deep Learning Convolutional Neural Network,” bit-Tech, vol. 7, no. 3, pp. 975–983, Apr. 2025, doi: 10.32877/bt.v7i3.2284.

H. N. Niko Pirnando, J. Petrus, and T. Tinaliah, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network dengan Arsitektur AlexNet,” MDP Student Conf., vol. 4, no. 1, pp. 207–214, Apr. 2025, doi: 10.35957/mdp-sc.v4i1.11099.

W. Wagiyanti, H. Hamidson, and S. Suwandi, “Intensity and Incidence of Pest Disease Attacks on Rice Plants in Enggal Rejo Village, Air Salek Subdistrict,” J. Glob. Sustain. Agric., vol. 4, no. 2, p. 144, Jun. 2024, doi: 10.32502/jgsa.v4i2.8408.

I. Irawan, M. H. Wathan, B. Swengky, and A. Ramadani, “Implementasi Convolutional Neural Network (CNN) dalam Diagnosa Penyakit Daun Padi Berdasarkan Citra Digital,” J. Pengemb. Sist. Inf. dan Inform., vol. 6, no. 3, pp. 55–67, Jul. 2025, doi: 10.47747/jpsii.v6i3.2756.

E. King et al., “Engaging the agricultural community in the development of mental health interventions: a qualitative research study,” BMC Psychiatry, vol. 23, no. 1, p. 399, Jun. 2023, doi: 10.1186/s12888-023-04806-9.

Y. Istikorini, S. N. Rohmah, A. Y. Maulina, D. P. Ardian, F. Z. Navizan, and I. F. Alam, “Penyuluhan Hama dan Penyakit pada Tanaman Padi dan Hortikultura di Desa Cihamerang , Sukabumi ( Extension of Pests and Diseases in Rice and Horticultural Plants in Cihamerang Village , Sukabumi ),” J. Pus. Inov. Masy., vol. 7, no. April, pp. 102–115, 2025, doi: 10.29244/jpim.7.1.102-115 April.

A. D. Dhaifulloh, B. I. Khayumi, D. Tirtayuda, M. K. A. A. Legawa, and Denny Oktavina Radianto, “Dampak Penggunaan Pestisida Kimia Terhadap Kualitas Tanah dan Air Sungai di Daerah Pertanian,” Venus J. Publ. Rumpun Ilmu Tek., vol. 2, no. 2, pp. 197–208, Apr. 2024, doi: 10.61132/venus.v2i2.280.

M. Günay, Ö. Yıldırım, and Y. Demir, “Deep Learning: Evolution, Innovations, And Applications In The Last Decade,” Middle East J. Sci., vol. 11, no. 1, pp. 96–115, Jun. 2025, doi: 10.51477/mejs.1640908.

T. D. Salka, M. B. Hanafi, S. M. S. A. A. Rahman, D. B. M. Zulperi, and Z. Omar, “Plant leaf disease detection and classification using convolution neural networks model: a review,” Artif. Intell. Rev., vol. 58, no. 10, pp. 1–66, 2025, doi: 10.1007/s10462-025-11234-6.

D. Pakiding, A. Selao, and W. Wahyuddin, “Implementasi Computer Vision dalam Mendeteksi Penyakit pada Tanaman Cabai dan Tomat Menggunakan Algoritma Convolutional Neural Networks,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 3, pp. 841–850, Jun. 2025, doi: 10.57152/malcom.v5i3.1989.

H. Imaduddin, F. Y. A’la, A. Fatmawati, and B. A. Hermansyah, “Comparison of transfer learning method for COVID-19 detection using convolution neural network,” Bull. Electr. Eng. Informatics, vol. 11, no. 2, pp. 1091–1099, 2022, doi: 10.11591/eei.v11i2.3525.

S. Maheswari and D. Gunawan, “Deteksi Dini Kanker Kulit Menggunakan Cnn, Dnn, Dan Efficientnet: Pendekatan Deep Learning Berbasis Web,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 10, no. 2, pp. 932–944, 2025, doi: 10.36341/rabit.v10i2.6417.

M. Khoiruddin, A. Junaidi, and W. A. Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network,” J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, pp. 37–45, Feb. 2022, doi: 10.20895/dinda.v2i1.341.

A. A. Abhinowo, R. R. Isnanto, and Dania Eridan, “Pemilihan Model Terbaik Algoritma Convolutional Neural Network Untuk Klasifikasi Jenis Bencana Alam The Best Model Selection Of Convolutional Neural Network Algorithm For Natural Disaster Classification,” J. Tek. Komput., vol. 1, no. 4, pp. 199–208, 2023, doi: 10.14710/jtk.v1i4.37656.

S. Sariah, N. Suarna, I. Ali, and D. Solihudin, “Penerapan Convolutional Neural Network (CNN) Untuk Prediksi Penyakit Tanaman Padi Melalui Citra Daun,” J. Komtika (Komputasi dan Inform., vol. 9, no. 1, pp. 1–10, May 2025, doi: 10.31603/komtika.v9i1.12852.

R. Suciani et al., “Deteksi penyakit daun padi menggunakan deep learning dengan arsitektur cnn detection of rice leaf disease using deep learning with cnn architecture,” J. Inf. Technol. Comput. Sci., vol. 8, no. 5, pp. 1451–1463, 2025, doi: https://doi.org/10.31539/9112kc41.

R. Ihza Yuzar Vianda, P. Anjarwati, H. Akbar Pratama, R. Maulana Akbar, and R. Dwi Irawan, “Klasifikasi Citra Bunga Multikelas Menggunakan Convolutional Neural Network (CNN),” Pros. Semin. Nas. Teknol. Inf. dan Bisnis 2025, vol. 2025, no. 1, pp. 367–376, Jul. 2025, doi: 10.47701/0d10j421.

K. R. Ummah, T. Karlita, R. Sigit, E. M. Yuniarno, I. K. E. Purnama, and M. H. Purnomo, “Effect of Image Pre-Processing Method on Convolutional Neural Network Classification of Covid-19 Ct Scan Images,” Int. J. Innov. Comput. Inf. Control, vol. 18, no. 6, pp. 1895–1912, 2022, doi: 10.24507/ijicic.18.06.1895.

A. Cardova and A. Hermawan, “Implementasi Metode LSTM Untuk Mengklasifikasi Berita Palsu Pada PolitiFact,” J. Fasilkom, vol. 13, no. 3, pp. 471–479, 2023, doi: 10.37859/jf.v13i3.6175.

C. Wijayanto and Y. A. Susetyo, “Implementasi Flask Framework Pada Pembangunan Aplikasi Sistem Informasi Helpdesk (SIH),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, pp. 858–868, Aug. 2022, doi: 10.29100/jipi.v7i3.3161.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Arsitektur CNN untuk Klasifikasi dan Identifikasi Penyakit Daun Tanaman Padi

Dimensions Badge
Article History
Submitted: 2026-01-12
Published: 2026-01-28
Abstract View: 92 times
PDF Download: 62 times
How to Cite
Hidayat, H., & Imaduddin, H. (2026). Implementasi Arsitektur CNN untuk Klasifikasi dan Identifikasi Penyakit Daun Tanaman Padi. Journal of Information System Research (JOSH), 7(2), 394-404. https://doi.org/10.47065/josh.v7i2.9192
Section
Articles