Sistem Informasi Prediksi Harga Saham Bank Syariah Menggunakan Metode Arima dan Sarima dengan Antarmuka Visual
Abstract
Stock price movements are highly dynamic, requiring prediction approaches that are not only accurate but also easy for users to understand. This study focuses on the development of abased stock price prediction information system for Bank Syariah Indonesia Tbk (BRIS) using a time series forecasting approach. The data used consist of historical BRIS stock prices (open, high, low, close, and volume) obtained from Investing.com and processed through data cleaning, normalization, and preparation to meet time series modeling assumptions. The prediction models applied in this study are ARIMA and SARIMA, with parameter selection based on ACF and PACF analysis. Model performance was evaluated using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to determine the accuracy level of the predictions. The evaluation results indicate that the ARIMA model outperforms the SARIMA model, achieving an MAE of 0,1266, RMSE of 0,1519, while the SARIMA model records an MAE of 0,1811, RMSE of 0,1955. The best model was then integrated into a web-based information system using Flask and React.js, which provides visualization of prediction results through interactive charts and comparisons with actual data. The system displays stock price prediction results in the form of interactive charts alongside actual data comparisons, aiming to help users understand stock price trends and support more objective, data-driven investment decisions.
Downloads
References
C. D. Puspasari, “Pengaruh Variabel Makroekonomi dan Kapitalisasi Pasar Terhadap Return on Equity (ROE) Saham Syariah (Studi Pada Jakarta Islamic Index (JII) Periode 2017-2021),” JMI: Jurnal Muamalat Indonesia, vol. 3, no. 2, pp. 308–322, 2023, doi: 10.26418/jmi.v3i2.
I. Saluza, D. Sartika, L. Widya Astuti, L. Desitama, and E. Dewi Purnamasari, “Prediksi Data Time Series Harga Penutupan Saham Menggunakan Model Box Jenkins ARIMA,” JURNAL ILMIAH INFORMATIKA GLOBAL, vol. 12, no. 2, pp. 75–81, Dec. 2021, doi: doi.org/10.36982/jiig.v12i2.1940.
D. Paningrum, Buku Referensi Investasi Pasar Modal. Kediri: Lembaga Chakra Brahmanda Lentera, 2022.
S. Khan and H. Alghulaiakh, “ARIMA Model for Accurate Time Series Stocks Forecasting,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 524–528, 2020, doi: 10.14569/IJACSA.2020.0110765.
E. R. Yudistira and I. M. P. Adiputra, “Pengaruh Faktor Internal dan Eksternal Terhadap Harga Saham,” Jurnal Ilmiah Akuntansi dan Humanika, vol. 10, no. 2, pp. 176–184, 2020, doi: https://doi.org/10.23887/jiah.v10i2.25862.
R. Akbar and D. Suselo, “Faktor Internal dan Eksternal Terhadap Return Saham,” Al-Kharaj : Jurnal Ekonomi, Keuangan & Bisnis Syariah, vol. 5, no. 3, pp. 1235–1251, Sep. 2022, doi: 10.47467/alkharaj.v5i3.1588.
BSI (Bank Syariah Indonesia), Laporan Tahun 2023 PT. Bank Syariah Indonesia, Tbk. Jakarta: PT BANK SYARIAH INDONESIA, Tbk, 2023.
U. Husen, I. Y. Nasarudin, and F. Mubarok, “The Effect of Ramadan on the Indonesian Sharia Stock Index,” Equilibrium: Jurnal Ekonomi Syariah, vol. 9, no. 1, p. 47, Jun. 2021, doi: 10.21043/equilibrium.v9i1.9071.
H. Sejati, I. Lihan, and E. Hendrawaty, “Analysis of Ramadan Effect on Indonesian Islamic Stock Market: Jakarta Islamic Index (JII) (2016-2020),” Asian Journal of Economics, Business and Accounting, vol. 22, no. 23, pp. 470–480, Nov. 2022, doi: 10.9734/ajeba/2022/v22i23887.
BSI (Bank Syariah Indonesia), BRIS Quarterly Report. (2023). Quarterly Financial Report Q2 2023. PT Bank Syariah Indonesia Tbk. Jakarta: PT BANK SYARIAH INDONESIA, Tbk, 2023.
IDX, Panduan Indeks IDX-MES BUMN 17. Jakarta: Indonesia Stock Exchange, 2021.
M. Ibnu and C. Rachmatullah, “TIN: Terapan Informatika Nusantara Forecasting Data Time Series Menggunakan MLP dan LSTM untuk Memprediksi Jumlah Produksi Bir,” TIN: Terapan Informatika Nusantara, vol. 6, no. 4, pp. 409–416, 2025, doi: 10.47065/tin.v6i4.7755.
R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications. Springer, 2011. doi: 10.1007/978-1-4419-7865-3.
A. Alarbi, W. Khalifa, and A. Alzubi, “A Hybrid AI Framework for Enhanced Stock Movement Prediction: Integrating ARIMA, RNN, and LightGBM Models,” Systems, vol. 13, no. 3, Mar. 2025, doi: 10.3390/systems13030162.
L. Rubio, A. Palacio Pinedo, A. Mejía Castaño, and F. Ramos, “Forecasting volatility by using wavelet transform, ARIMA and GARCH models,” Eurasian Economic Review, vol. 13, no. 3–4, pp. 803–830, Dec. 2023, doi: 10.1007/s40822-023-00243-x.
R. Fitriansyah and M. S. Nurzaman, “Macroeconomic Determinants and Global Islamic Market Linkages of the Jakarta Islamic Index,” Share: Jurnal Ekonomi dan Keuangan Islam, vol. 14, no. 1, pp. 258–284, May 2025, doi: 10.22373/share.v14i1.26679.
H. Baroroh, M. S. T. Azka, and S. N. Afifah, “Oil Price Volatility And Macroeconomics, Does It Affect The Performance Of Islamic Stocks In The Jakarta Islamic Index?,” AL-ARBAH: Journal of Islamic Finance and Banking, vol. 5, no. 2, pp. 125–150, Nov. 2023, doi: 10.21580/al-arbah.2023.5.2.18037.
Z. Raissa, “A Comparative Analysis Of Financial Performance Forecasting Models: Arima, Arima-Garch & Lstm In Indonesian Banking Stocks,” JURNAL ILMIAH MANAJEMEN BISNIS DAN INOVASI, vol. 12, no. 1, pp. 328–340, 2025, doi: https://doi.org/10.35794/jmbi.v12i1.61515.
S. Cendikia Millantika, “Portfolio Optimization by Considering Return Predictions Using the ARIMA Method on Jakarta Islamic Index Sharia Stocks,” International Journal of Quantitative Research and Modeling, vol. 6, no. 2, pp. 248–254, 2025, doi: https://doi.org/10.46336/ijqrm.v6i2.1012.
M. N. Rajapriya, P. Gracelin Sweety, C. Gracilin, and S. Dharshini Subanu, “Stock Price Prediction Web Application,” Internaaonal Journal of Sciennfic Research and Engineering Development, vol. 8, no. 2, pp. 3065–3071, 2025, [Online]. Available: www.ijsred.com
Q. Zhang, “The Impact of Interactive Data Visualization on Decision-Making in Business Intelligence,” Advances in Economics, Management and Political Sciences, vol. 87, no. 1, pp. 166–171, Jun. 2024, doi: 10.54254/2754-1169/87/20241056.
D. Stempień and R. Ślepaczuk, “Hybrid Models for Financial Forecasting: Combining Econometric, Machine Learning, and Deep Learning Models,” May 26, 2025. doi: doi.org/10.48550/arXiv.2505.19617.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sistem Informasi Prediksi Harga Saham Bank Syariah Menggunakan Metode Arima dan Sarima dengan Antarmuka Visual
Pages: 301-310
Copyright (c) 2026 Muhamad Fadhil AC, Atiqah Meutia Hilda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















