Analisis Sentimen Terhadap Film “Dirty Vote” Pada Media Sosial X dan Youtube dengan Algoritma Naive Bayes dan SVM
Abstract
Indonesia's presidential and vice-presidential elections in 2024 sparked widespread discussion on social media, particularly regarding Gibran's candidacy as a vice presidential candidate. The documentary Dirty Vote deepened the discussion by exposing the practice of fraud and manipulation in the election, raising public concerns about the integrity of the election. This study aims to analyze public sentiment towards the Dirty Vote film on social media YouTube and Twitter (X) using Naïve Bayes and SVM algorithms. Data was collected through crawling techniques on YouTube and Twitter (X) from February 11, 2024 to August 30, 2024. The preprocessing stages include Cleansing, Transform Cases, Tokenizing, Stopwords Removal, and Stemming. The data obtained is then classified into positive and negative sentiment categories. Model evaluation is done using Confusion Matrix which includes accuracy, precision, and recall. The results showed variations in model performance on both social media. On YouTube, Naïve Bayes algorithm achieved 81.24% accuracy, with 63.44% precision and 100.00% recall, while SVM showed 86.94% accuracy, 91.62% precision, and 65.92% recall. On Twitter (X), Naïve Bayes produced the highest accuracy of 95.13%, precision 88.86%, and recall 100.00%, while SVM recorded the same accuracy of 95.13%, with the highest precision of 99.66% and recall 87.76%. These results show that SVM is superior in precision, while Naïve Bayes has a consistently high recall. The analysis showed dissatisfaction with election integrity on almost all YouTube and Twitter (X) platforms.
Downloads
References
A. A. Firdaus, A. Yudhana, I. Riadi, and Mahsun, “Indonesian presidential election sentiment: Dataset of response public before 2024,” Data Brief, vol. 52, 2024, doi: 10.1016/j.dib.2023.109993.
A. Nathaniella and I. Triadi, “Pengaruh Film Dokumenter ‘Dirty Vote’ pada Saat Masa Tenang Pemilihan Umum Tahun 2024 di Indonesia,” Indonesian Journal of Law and Justice, vol. 1, no. 4, p. 11, 2024, doi: 10.47134/ijlj.v1i4.2402.
S. Kemp, “The State of Digital in Indonesia in 2023,” datareportal. [Online]. Available: https://datareportal.com/reports/digital-2023-indonesia
F. L. Sa’idah, D. E. Santi, and S. Suryanto, “Faktor Produksi Ujaran Kebencian melalui Media Sosial,” Jurnal Psikologi Perseptual, vol. 6, no. 1, 2021, doi: 10.24176/perseptual.v6i1.5144.
E. Pamuji, “Ujaran kebencian pada ruang – ruang digital,” Jurnal Kajian Media, vol. 4, no. 2, 2020, doi: 10.25139/jkm.v4i2.2811.
H. J. Sitorus, M. Tanoyo, and . I., “Polarisasi Politik Melalui Interaksi Sosial Di Instagram: Studi Kasus Pemilu 2024 Di Indonesia,” JKOMDIS : Jurnal Ilmu Komunikasi Dan Media Sosial, vol. 4, no. 2, pp. 383–394, 2024, doi: 10.47233/jkomdis.v4i2.1675.
P. Fitriyah and A. Muhammad F, “PENENTUAN MODULARITY CLASS PADA FENOMENA CROSS PLATFORM #WHATSAPPDOWN TRENDING DI TWITTER MENGGUNAKAN SOCIAL NETWORK ANALYSIS,” BroadComm, vol. 3, no. 1, 2021, doi: 10.53856/bcomm.v3i1.216.
I. Utami and M. Marzuki, “Analisis Sistem Informasi Banjir Berbasis Media Twitter,” Jurnal Fisika Unand, vol. 9, no. 1, 2020, doi: 10.25077/jfu.9.1.67-72.2020.
L. Sari, “Upaya Menaikkan Kualitas Pendidikan Dengan Pemanfaatan Youtube Sebagai Media Ajar Pada Masa Pandemi Covid-19,” Jurnal Tawadhu, vol. Vol. 4, no. 1, 2020.
R. Kurniawan, F. Lestari, A. S. Batubara, M. Z. A. Nazri, K. Rajab, and R. Munir, “Indonesian Lexicon-Based Sentiment Analysis of Online Religious Lectures Review,” in 2021 International Congress of Advanced Technology and Engineering, ICOTEN 2021, 2021. doi: 10.1109/ICOTEN52080.2021.9493530.
D. A. Riyanto, “We Are Social Indonesia Digital Report 2023,” We Are Social-Hootsuite, 2023.
F. Jamilah and P. Wahyuni, “Ujaran Kebencian dalam Kolom Komentar YouTube pada Tahun Politik Pemilihan Presiden 2019,” Silampari Bisa: Jurnal Penelitian Pendidikan Bahasa Indonesia, Daerah, dan Asing, vol. 3, no. 2, pp. 325–341, 2020, doi: 10.31540/silamparibisa.v3i2.1109.
D. F. Sjoraida, B. W. K. Guna, and D. Yudhakusuma, “Analisis Sentimen Film Dirty Vote Menggunakan BERT (Bidirectional Encoder Representations from Transformers),” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 2, pp. 393–404, 2024, doi: 10.35870/jtik.v8i2.1580.
M. Khairudin, A. Sukendar, and A. Somantri, “ANALISIS SENTIMEN FILM DI TWITTER MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” Jurnal Sains dan Sistem Teknologi Informasi, vol. 5, no. 1, 2023, doi: 10.59811/sandi.v5i1.47.
Muhammad Rizal, M. Martanto, and U. Hayati, “ANALISIS SENTIMEN PENGGUNA TWITTER TERKAIT FILM ONE PIECE MENGGUNAKAN METODE NAIVE BAYES,” Jurnal Sistem Informasi Kaputama (JSIK), vol. 8, no. 1, 2024, doi: 10.59697/jsik.v8i1.522.
F. Febriant, H. Christy, and A. Wijaya, “Analisis Sentimen Film The Marvels Dari Aplikasi Twitter Menggunakan Metode Lexicon Based,” JuSiTik : Jurnal Sistem dan Teknologi Informasi Komunikasi, vol. 7, no. 1, 2023, doi: 10.32524/jusitik.v7i1.1046.
S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, 2021, doi: 10.30865/mib.v5i1.2580.
W. Armadianti et al., “Analisis Sentimen Netizen Terhadap Personal Branding Elon Musk Pada Platform X Dengan Pendekatan Analisis Support Vector Machine,” vol. 9, no. 1, 2024.
D. Hernikawati, “Kecenderungan Tanggapan Masyarakat Terhadap Vaksin Sinovac Berdasarkan Lexicon BasedSentiment Analysis,” IPTEK-KOM, vol. 23, no. 1, 2021.
R. Firdaus et al., “Implementasi Algoritma Random Forest Untuk Klasifikasi Pencemaran Udara di Wilayah Jakarta Berdasarkan Jakarta Open Data,” vol. 14, no. 2, pp. 520–525, 2021.
A. Gaizka, A. R. Dzikrillah, and E. Sinduningrum, “Analisis Sentimen Masyarakat Sebelum Dan Sesudah Terpilihnya Gibran Sebagai Cawapres Prabowo Menggunakan Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 6, pp. 2830–2841, 2024, doi: 10.30865/klik.v4i6.1876.
D. Pratmanto et al., “Analisa Sentimen Persepsi Masyarakat Terhadap Aplikasi Bea Cukai Mobile Menggunakan Algoritma Naive Bayes Dan K-Nearest,” vol. 12, no. 2, pp. 92–100, 2024.
R. Nurlaely, S. D. Sartika, Kamdan, and I. L. Kharisma, “Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM),” Jurnal Computer Science and Information Technology(CoSciTech), vol. 4, no. 2, pp. 376–384, 2023, [Online]. Available: http://ejurnal.umri.ac.id/index.php/coscitech/indexhttps://doi.org/10.37859/coscitech.v4i2.5161
R. Ulgasesa, A. B. P. Negara, and T. Tursina, “Pengaruh Stemming Terhadap Performa Klasifikasi Sentimen Masyarakat Tentang Kebijakan New Normal,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 10, no. 3, 2022, doi: 10.26418/justin.v10i3.53880.
D. Rezekika, “Penerapan Algoritma Naïve Bayes Untuk Memprediksi Penjualan Spare Part Sepeda Motor,” Jurnal Pelita Informatika, vol. 8, no. 3, 2020.
M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, vol. 4, no. 2, 2021, doi: 10.31289/jite.v4i2.4524.
Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, 2021, doi: 10.29207/resti.v5i4.3146.
M. Syarifuddinn, “ANALISIS SENTIMEN OPINI PUBLIK TERHADAP EFEK PSBB PADA TWITTER DENGAN ALGORITMA DECISION TREE,KNN, DAN NAÏVE BAYES,” INTI Nusa Mandiri, vol. 15, no. 1, 2020, doi: 10.33480/inti.v15i1.1433.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Film “Dirty Vote” Pada Media Sosial X dan Youtube dengan Algoritma Naive Bayes dan SVM
Pages: 73-85
Copyright (c) 2024 Kukuh Hadi Sasongko, Atiqah Meutia Hilda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).