Klasfikasi Tingkat Kematangan Roasting Biji Kopi Berbasis Deep Learning dengan Arsitektur MobileNet


  • Tegar Firmansyah Universitas Bina Insan, Lubuklinggau, Indonesia
  • Rudi Kurniawan Universitas Bina Insan, Lubuklinggau, Indonesia
  • Asep Toyib Hidayat * Mail Universitas Bina Insan, Lubuklinggau, Indonesia
  • (*) Corresponding Author
Keywords: MobileNet; Coffee Roasting; Deep Learning

Abstract

Coffee is one of the most widely consumed beverage ingredients in Indonesia and has high economic value to improve the community's economy and as a source of foreign exchange. The roasting process is an important stage in coffee processing because it affects the aroma and flavor of coffee. What is often encountered is that visually determining the level of coffee roasting is often inaccurate and prone to human error. To overcome this problem, this study uses a deep learning approach with a transfer learning method based on MobileNet architecture to classify the level of coffee roasting maturity based on digital images. MobileNet was chosen due to its lightweight and fast architecture, suitable for implementation on mobile devices. This research aims to compare the performance of the model in detecting coffee roasting level automatically, efficiently, and objectively. With this approach, it is expected that coffee enthusiasts and producers can easily recognize the type of coffee roasting, support product quality consistency, and reduce dependence on experts in the roasting process. This study analyzed the performance of the classification model with the results showing excellent performance. The model achieved a total accuracy of 99.50%, with consistently high precision, recall, and f1-score values across all classes, including several classes with perfect scores (1,000). Evaluation using ROC curves and AUC also demonstrated the model's ability to distinguish between the two classes.

Downloads

Download data is not yet available.

References

I. Alfiantama, M. I. Kresnawan, and A. P. Handoko, “Klasifikasi Tingkat Roasting Biji Kopi Dengan Metode CNN,” Pros. Semin. Nas. Teknol. Dan Sains Tahun 2024, vol. 3, pp. 285–290, 2024.

Galih Wasis Wicaksono and Andreawan, “ResNet101 Model Performance Enhancement in Classifying Rice Diseases with Leaf Images,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 2, pp. 345–352, 2023, doi: 10.29207/resti.v7i2.4575.

S. N. Ria, M. Walid, and B. A. Umam, “Pengolahan Citra Digital Untuk Identifikasi Jenis Penyakit Kulit Menggunakan Metode Convolutional Neural Network (CNN),” Energy - J. Ilm. Ilmu-Ilmu Tek., vol. 12, no. 2, pp. 9–16, 2022, doi: 10.51747/energy.v12i2.1118.

M. F. Naufal and S. F. Kusuma, “Analisis Perbandingan Algoritma Machine Learning Dan Deep Learning Untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (Sibi),” Jtiik, vol. 10, no. 4, pp. 873–882, 2023, doi: 10.25126/jtiik.2023106828.

N. T. Adam, Z. A. Tyas, and T. Hardiani, “Deteksi Gestur Sistem Isyarat Bahasa Indonesia Menggunakan Metode Deep learning SSD MobileNet V2 FPNLite,” Sainteks, vol. 21, no. 2, pp. 129–142, 2024, doi: 10.30595/sainteks.v21i2.24006.

Nurkhasanah and Murinto, “Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network Classification of Facial Skin Diseases Using the Method of the Convolutional Neural Network,” Sainteks, vol. 18, no. 2, pp. 183–190, 2021.

D. D. Mahendra and F. S. Mukti, “Sistem Deteksi dan Pengendalian Serangan Denial of Service pada Server Berbasis Snort dan Telegram-API,” Techno.Com, vol. 21, no. 3, pp. 511–522, 2022, doi: 10.33633/tc.v21i3.6466.

N. Wardhani and M. Adnan, “Kos Untuk Mahasiswa Di Luwuk Banggai Dengan Metode Saw ( Simple Additive Weighting ),” 2017.

M. U. Muhammad Yudya A Hasibuan, Wahdini Marleta, Assri Yani Sibuea, Muhammad Sultan, “Klasifikasi Jenis Biji Kopi Menggunakan Convolutionalneural Network Dan Transfer Learning Pada Model Vgg16 Dan Glcm 47e954,” Senastika Univ. Malikussaleh KLASIFIKASI, pp. 1–11, 2024.

D. S. P. Arvi Arkadia, Sekar Ayu Damayanti, “Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, vol. 2, no. 2, pp. 158–165, 2021, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/1813/0.

U. UNGKAWA and G. AL HAKIM, “Klasifikasi Warna pada Kematangan Buah Kopi Kuning menggunakan Metode CNN Inception V3,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 3, p. 731, 2023, doi: 10.26760/elkomika.v11i3.731.

R. A. Saputra, S. Wasiyanti, A. Supriyatna, and D. F. Saefudin, “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi,” Swabumi, vol. 9, no. 2, pp. 184–188, 2021, doi: 10.31294/swabumi.v9i2.11678.

W. Hastomo, Sugiyanto, and Sudjiran, “Convolution Neural Network Arsitektur Mobilenet-V2 Untuk Mendeteksi Tumor Otak,” Semin. Nas. Teknol. Inf. dan Komun. STI&K, vol. 5, no. 1, pp. 17–21, 2021.

A. Fuadi and A. Suharso, “Perbandingan Arsitektur Mobilenet Dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, pp. 701–710, 2022, doi: 10.29100/jipi.v7i3.3026.

A. R. Freyssenita Kanditami, Deni Saepudin, “Analisis Contras Limited Adaptive Histogram Equalization (CLAHE) dan Region Growing dalam Deteksi Gejala Kanker Payudara pada Citra Mammogram,” Elektro, vol. 11, no. 2, pp. 1–13, 2014.

I. F. Annur, J. Umami, M. N. Annafii, N. Trisnaningrum, and O. V. Putra, “Klasifikasi Tingkat Keparahan Penyakit Leafblast Tanaman Padi Menggunakan MobileNetv2,” Fountain Informatics J., vol. 8, no. 1, pp. 7–14, 2023, doi: 10.21111/fij.v8i1.9419.

G. A. Pratama, E. Y. Puspaningrum, and H. Maulana, “Convolutional Neural Network Dan Faster Region Convolutional Neural Network Untuk Klasifikasi Kualitas Biji Kopi Arabika,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 2776–2785, 2024, doi: 10.23960/jitet.v12i3.4887.

H. Rahman, R. S. D’Cruze, M. U. Ahmed, R. Sohlberg, T. Sakao, and P. Funk, “Artificial Intelligence-Based Life Cycle Engineering in Industrial Production: A Systematic Literature Review,” IEEE Access, vol. 10, no. December, pp. 133001–133015, 2022, doi: 10.1109/ACCESS.2022.3230637.

O. Trisnawati and M. Prastuti, “Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network,” J. Sains dan Seni ITS, vol. 11, no. 1, 2022, doi: 10.12962/j23373520.v11i1.63165.

D. Ahmad and N. Haq, “Makalah Hardware, Software Dan Brainware Komputer,” Makal. Hardware, Softw. Dan Brainware Komput., p. 22, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasfikasi Tingkat Kematangan Roasting Biji Kopi Berbasis Deep Learning dengan Arsitektur MobileNet

Dimensions Badge
Article History
Submitted: 2025-01-22
Published: 2025-02-08
Abstract View: 51 times
PDF Download: 48 times
How to Cite
Firmansyah, T., Kurniawan, R., & Hidayat, A. (2025). Klasfikasi Tingkat Kematangan Roasting Biji Kopi Berbasis Deep Learning dengan Arsitektur MobileNet. Journal of Information System Research (JOSH), 6(2), 1433-1443. https://doi.org/10.47065/josh.v6i2.6811
Issue
Section
Articles