Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5


  • Rudi Kurniawan * Mail Universitas Bina Insan, Lubuklinggau, Indonesia
  • Ahmad Taqwa Martadinata Universitas Bina Insan, Lubuklinggau, Indonesia
  • Sandy Dwi Cahyo Universitas Bina Insan, Lubuklinggau, Indonesia
  • (*) Corresponding Author
Keywords: Computer vision; Machine Learning; YOLO v5; Roboflow

Abstract

Object identification and recognition in the field of computer vision is undergoing rapid development and is applied to various fields, ranging from industry to the health sector. This is reflected in the amount of research conducted, including a focus on the application and personalization of machine learning, as well as the development of new models to solve specific problems and challenges. In the palm oil industry, fruit maturity is divided into two categories, namely immature and ripe. Traditionally, fruit maturity is determined visually by experienced workers based on the number of fruits falling from the bunch or the color of the bunch. However, this technique has disadvantages such as the reduced amount of oil when many fruits fall from the bunch and the subjective assessment of fruit color. Therefore, the purpose of this research is to create an oil palm fruit maturity classification system based on YOLO v5. The dataset used consists of 1500 photos and the annotation data is created with roboflow. The final result is divided into three categories, namely ripe, immature, and rotten. The YOLOv5s algorithm was used to train the dataset. Based on the model estimation results, mAP reached 92%, accuracy reached 97%, and recall reached 96%. The last step is real-time system testing.

Downloads

Download data is not yet available.

References

Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal Comput. Eng. Syst. Sci., vol. 6, no. 2, p. 192, 2021, doi: 10.24114/cess.v6i2.25840.

E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” J. Sains dan Inform., vol. 6, no. 2, pp. 193–202, 2020, doi: 10.34128/jsi.v6i2.242.

D. Iskandar Mulyana, M. Faizal Lazuardi, and M. Betty Yel, “Deteksi Bahasa Isyarat Dalam Pengenalan Huruf Hijaiyah Dengan Metode YOLOV5,” J. Tek. Elektro dan Komputasi, vol. 4, pp. 145–151, 2022.

W. A. Aji, S. A. Saloko, I. Kurniawan, and M. A. Nurcahya, “The Effect of Rainfall and Rain Days On Palm Oil Production,” Trop. Plant. J., vol. 1, no. 1, pp. 16–20, 2022, doi: 10.56125/tpj.v1i1.3.

F. Agustina, “Deteksi Kematangan Buah Pepaya Menggunakan Algoritma YOLO Berbasis Android,” J. Ilm. Infokam, vol. 18, no. 2, pp. 70–78, 2022, doi: 10.53845/infokam.v18i2.320.

L. Susanti, N. K. Daulay, and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, p. 640, 2023, doi: 10.30865/jurikom.v10i2.6032.

M. S. Nuha and R. Alexandro H., “Pemanfaatan Yolo untuk Pengenalan Kesegaran Buah Mangga,” Joutica, vol. 7, no. 1, p. 513, 2022, doi: 10.30736/jti.v7i1.747.

F. H. Zain and H. Santoso, “Sistem Deteksi Kerusakan Gedung Menggunakan Algoritma YOU ONLY LOOK ONCE Dengan Unmanned Aero Vehicle,” J. Politek. Negeri Jakarta, pp. 1–40, 2021.

M. Sarosa and N. Muna, “Implementasi Algoritma You Only Look Once ( Yolo ) Untuk Implementation of You Only Look Once ( Yolo ) Algorithm for,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, pp. 787–792, 2021, doi: 10.25126/jtiik.202184407.

C. N. Liunanda, S. Rostianingsih, and A. N. Purbowo, “Implementasi Algoritma YOLO pada Aplikasi Pendeteksi Senjata Tajam di Android,” J. Infra, vol. Vol 8, No., pp. 1–7, 2020.

M. R. Prasanta and M. Y. Pranata, “Perancangan Sistem Deteksi Api Menggunakan Framework YOLOv4,” … Semin. Nas. Teknol. …, pp. 183–187, 2021, [Online]. Available: https://semnastera.polteksmi.ac.id/index.php/semnastera/article/view/243.

G. I. E. Soen, Marlina, and Renny, “Implementasi Cloud Computing dengan Google Colaboratory Pada Aplikasi Pengolah Data Zoom Participants,” J. Inform. Technol. Commun., vol. 6, no. 1, pp. 24–30, 2022.

A. Wibowo, L. Lusiana, and T. K. Dewi, “Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk,” Paspalum J. Ilm. Pertan., vol. 11, no. 1, p. 123, 2023, doi: 10.35138/paspalum.v11i1.489.

D. N. Nugroho and L. Anifah, “Perancangan Sistem Deteksi Objek Bola Dan Gawang Pada Robot Sepakbola Menggunakan Metode Darknet YOLO,” J. Inf. Eng. Educ. Technol., vol. 07, pp. 22–29, 2023.

I. Salamah, M. R. A. Said, and S. Soim, “Perancangan Alat Identifikasi Wajah Dengan Algoritma You Only Look Once (YOLO) Untuk Presensi Mahasiswa,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1492, 2022, doi: 10.30865/mib.v6i3.4399.

E. S. Huzain Azis, Fadhila Tangguh Admojo, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” vol. 19, no. 3, pp. 286–294, 2020, doi: 10.33633/tc.v19i3.3646.

D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020, doi: 10.1186/s12864-019-6413-7.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

M. K. Suryadewiansyah and T. E. E. Tju, “Naïve Bayes dan Confusion Matrix untuk Efisiensi Analisa Intrusion Detection System Alert,” J. Nas. Teknol. dan Sist. Inf., vol. 8, no. 2, pp. 81–88, 2022, doi: 10.25077/teknosi.v8i2.2022.81-88.

A. A. Laila Qadrini, Andi Seppewali, “Decision Tree dan Adaboostpada Klasifikasi Penerima Program Bantuan Sosial,” Decis. Tree Dan Adab. Pada Klasifikasi Penerima Progr. Bantu. Sos., vol. 2, no. 7, pp. 1959–1966, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5

Dimensions Badge
Article History
Submitted: 2023-10-12
Published: 2023-10-31
Abstract View: 2660 times
PDF Download: 1721 times
How to Cite
Kurniawan, R., Martadinata, A., & Cahyo, S. (2023). Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5. Journal of Information System Research (JOSH), 5(1), 302-309. https://doi.org/10.47065/josh.v5i1.4408
Section
Articles