Prediksi Curah Hujan di Kabupaten Magelang Menggunakan Metode Fuzzy Time Series Untuk Mendukung Pengambilan Keputusan
Abstract
Rainfall prediction is an important aspect in water resource management, agriculture and disaster mitigation. Magelang Regency, as one of the regions in Indonesia that has high rainfall variability, requires accurate prediction methods to support planning and decision making. This research aims to apply the Fuzzy Time Series method which is known to be effective in handling uncertain and fluctuating time series data in predicting rainfall in Magelang Regency. Monthly rainfall data for 2022–2024 used in this research was obtained from the Public Works and Spatial Planning Department. The research results show that the Fuzzy Time Series method is able to provide rainfall predictions with a good level of accuracy. This is indicated by the Mean Absolute Percentage Error (MAPE) value of 16.19%, which is in the good category according to prediction standards. This success shows that the Fuzzy Time Series method can be an effective alternative in predicting rainfall, especially in areas that have complex rainfall patterns such as Magelang Regency.
Downloads
References
M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang,” Jurnal Repositor, vol. 2, no. 3, pp. 331–338, 2020, doi: 10.22219/repositor.v2i3.470.
Putra Alex Arbendi Hutahaean, “Rancang Bangun Alat Pengukur Curah Hujan Dan,” Konferensi Nasional Social dan Engineering Politeknik Negeri Medan Tahun 2023, pp. 7–15, 2023.
M. Soleh, D. Sartika, and U. Dehasen, “PENERAPAN LOGIKA FUZZY DALAM PREDIKSI JUMLAH PRODUKSI DI PT . INOCYCLE TECHNOLOGY TBK,” vol. 4307, no. 4, pp. 1440–1445, 2024.
T. A. Faisal Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” Jurnal Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.106892.
S. Julida and D. Murni, “Perbandingan Metode Fuzzy Time Series Model Chen Dan Model Markov Chain Untuk Memprediksi Curah Hujan Di Kota Padang,” Jurnal Pendidikan Tambusai, vol. 8, no. 1, pp. 15809–15821, 2024.
I. Admirani, “Model Ruey Chyn Tsaur Fuzzy Time Series Untuk Prediksi Pendaftaran Mahasiswa Baru,” 56 Jurnal JUPITER, vol. 12, no. 2, pp. 56–64, 2020.
F. WAHYU, G. W. Nurcahyo, and S. Arlis, “Penerapan Metode Fuzzy Time Series untuk Memprediksi Hasil Panen Kopi pada Dinas Pertanian,” Jurnal KomtekInfo, vol. 11, pp. 139–148, 2024, doi: 10.35134/komtekinfo.v11i3.543.
M. D. Rachmawati and L. Anifah, “Prediksi Curah Hujan Menggunakan Metode Average Based dan High Order Fuzzy Time Series di Bandar Udara Juanda,” JIEET (Journal of Information Engineering and Educational Technology), vol 3, no 1, 2019.
M. D. Rachmawati and L. Anifah, “Prediksi Curah Hujan Menggunakan Metode Average Based dan High Order Fuzzy Time Series di Bandar Udara Juanda,” Journal of Information Engineering and Educational Technology, vol. 3, no. 1, pp. 11–15, 2021, doi: 10.26740/jieet.v3n1.p11-15.
A. Susano and W. Anggraeni, “Rainfall Prediction Using Fuzzy Time Series,” NUCLEUS, vol. 2, no. 2, pp. 78–84, Nov. 2021, doi: 10.37010/nuc.v2i2.619.
A. Susano and W. Anggraeni, “Rainfall Prediction Using Fuzzy Time Series,” Nucleus, vol. 2, no. 2, pp. 78–84, 2021, doi: 10.37010/nuc.v2i2.619.
D. S. N. Aliana, Y. Permanasari, and Respitawulan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Model Logika Fuzzy Time Series,” Jurnal Riset Matematika, vol. 1, no. 1, pp. 65–72, Oct. 2021, doi: 10.29313/jrm.v1i1.220.
D. S. N. Aliana, Y. Permanasari, and Respitawulan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Model Logika Fuzzy Time Series,” Jurnal Riset Matematika, vol. 1, no. 1, pp. 65–72, 2021, doi: 10.29313/jrm.v1i1.220.
R. Rahmawati, D. E. Sari, A. N. Rahma, and M. Soleh, “Prediksi Curah Hujan di PPKS Bukit Sentang Dengan Menggunakan Fuzzy Time Series Ruey Chyn Tsaur,” Jurnal Matematika Integratif, vol. 17, no. 1, p. 51, Aug. 2021, doi: 10.24198/jmi.v17.n1.32820.51-61.
R. Rahmawati, D. E. Sari, A. N. Rahma, and M. Soleh, “Prediksi Curah Hujan di PPKS Bukit Sentang Dengan Menggunakan Fuzzy Time Series Ruey Chyn Tsaur,” Jurnal Matematika Integratif, vol. 17, no. 1, p. 51, 2021, doi: 10.24198/jmi.v17.n1.32820.51-61.
H. R. Prasetyo, I. Palupi, and B. A. Wahyudi, “Prediksi Menggunakan Model Fuzzy Time Series Studi Kasus Curah Hujan di Kabupaten Bandung,” LOGIC: Jurnal Penelitian Informatika, vol. 1, no. 1, p. 8, Sep. 2023, doi: 10.25124/logic.v1i1.6405.
H. R. Prasetyo, I. Palupi, and B. A. Wahyudi, “Prediksi Menggunakan Model Fuzzy Time Series Studi Kasus Curah Hujan di Kabupaten Bandung,” LOGIC: Jurnal Penelitian Informatika, vol. 1, no. 1, p. 8, 2023, doi: 10.25124/logic.v1i1.6405.
R. D. Laksmana, E. Santoso, and B. Rahayudi, “Prediksi Penjualan Roti Menggunakan Metode Exponential Smoothing (Studi Kasus : Harum Bakery),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 5, pp. 4933–4941, 2019.
B. W. Yudanto and B. Hartanto, “Implementasi Metode Single Exponential Smoothing dalam Melakukan Perkiraan Stok Barang di Toko Makanan Ringan Berbasis Sistem Informasi,” Journal of Economic, Management, Accounting and Technology, vol. 5, no. 2, pp. 188–199, 2022, doi: 10.32500/jematech.v5i2.2563.
A. Baradja and T. I. Tjendrowasono, “Penerapan Machine Learning untuk Meningkatkan Prediksi Mata Uang Forex dengan Indikator Teknikal,” vol. 2, no. 1, pp. 38–41, 2023.
N. Kamal and Y. Ramdhani, “Optimasi Algoritma Neural Network Berbasis Fitur Seleksi Menggunakan Algoritma Genetika untuk Prediksi Curah Hujan,” E-Prosiding Teknik Informatika, vol. 4, no. 2, pp. 269–282, 2023.
Rahmawati, E. P. Cynthia, and K. Susilowati, “Metode Fuzzy Time Series Metode Fuzzy Time Series Cheng dalam Memprediksi Jumlah Wisatawan di Provinsi Sumatera Barat,” Jurnal of Education Informatic Technology and Science (JeITS), vol. 1, no. 1, pp. 11–23, 2019.
M. R. Ramadhan, T. Tursina, and H. Novriando, “Implementasi Fuzzy Time Series pada Prediksi Jumlah Penjualan Rumah,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 8, no. 4, p. 418, 2020, doi: 10.26418/justin.v8i4.40186.
D. Arvie, “Peramalan Import Migas dan Non-migas Menggunakan Metode Fuzzy Time Series Model Cheng,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 3519–3528, 2022, doi: 10.35957/jatisi.v9i4.2885.
R. I. Perwira, D. Yudhiantoro, and E. Wahyurini, “Fuzzy Time Series Model Cheng Untuk Meramalkan Volume Hasil Panen Pada Tanaman Garut,” Telematika, vol. 17, no. 1, p. 11, 2020, doi: 10.31315/telematika.v17i1.3400.
S. W. Gultom, “Prediksi Jumlah Pendapatan Daerah Pada Kantor BPKPAD Dengan Metode Fuzzy Time Series,” TIN: Terapan Informatika Nusantara, vol. 3, no. 5, pp. 205–213, 2022, doi: 10.47065/tin.v3i5.4114.
S. Sulpaiyah, S. Bahri, and L. Harsyiah, “Peramalan Harga Beras dengan Metode Double Exponential Smoothing dan Fuzzy Time Series (Study Kasus : Harga Beras di Kota Mataram),” Eigen Mathematics Journal, vol. 5, no. 2, pp. 58–69, 2022, doi: 10.29303/emj.v5i2.123.
E. G. Wahyuni, “Membandingkan Tingkat Efisiensi Metode Tsukamoto dan Sugeno untuk kasus Pneumonia,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 7, no. 2, p. 94, 2022, doi: 10.24014/coreit.v7i2.15085.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Prediksi Curah Hujan di Kabupaten Magelang Menggunakan Metode Fuzzy Time Series Untuk Mendukung Pengambilan Keputusan
Pages: 923-932
Copyright (c) 2024 Ginanjar Prianggoro Kasih, Uky Yudatama, R Arri Widyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).