Komparasi Metode Perhitungan Jarak K-Means Paling Baik Terhadap Pembentukan Pola Kunjungan Wisatawan Mancanegara
Abstract
Understanding patterns among foreign tourists is an urgent matter. These patterns can become knowledge that helps in making better decisions because they are data-driven. The pattern to be elaborated on is regarding the clustering of visits by foreign tourists to tourist destinations in Jakarta. Data mining is an approach that extracts knowledge patterns from a dataset. K-Means is one of the data mining algorithms used for clustering data, where data is grouped based on similarity in features and attributes. This study compares the Euclidean Distance, Manhattan Distance, and Haversine Distance methods to obtain more representative data clusters for the datasets. The datasets in this study are not normally distributed due to outlier data; hence, the DBSCAN algorithm is used for improvement without removing or cutting the data, as it can result in a significant amount of missing values that could affect information that does not align with empirical facts. In this study, 5 clusters were created based on elbow calculation results. The K-Means cluster testing in Euclidean distance yielded a Silhouette Score of 0.36, Inertia of 0.86, and Davies-Bouldin Index of 2.39. The Manhattan method resulted in a Silhouette Score of 0.65, Inertia of 1.46, and Davies-Bouldin Index of 0.47. Meanwhile, applying the Haversine method resulted in a Silhouette Score of 0.36, Inertia of 0.03, and a value of 2.39 for the Davies-Bouldin Index.
Downloads
References
D. Rahmayani, S. Oktavilia2, D. A. Suseno, E. L. Isnaini, and A. Supriyadi, “Economics Development Analysis Journal Tourism Development and Economic Growth: An Empirical Investigation for Indonesia Article Information,” Econ. Dev. Anal. J., vol. 1, no. 1, pp. 1–11, 2022, [Online]. Available: https://doi.org/10.15294/edaj.v11i1.50009
P. Widayanti, “Kian Melesat di 2023 Wisata Indonesia Bersiap Menuju Level Pandemi,” Media Keuangan Kemenku RI, 2023. https://mediakeuangan.kemenkeu.go.id/article/show/kian-melesat-di-2023-pariwisata-indonesia-bersiap-menuju-level-prapandemi
Kemenkumham, “Undang-Undang Republik Indonesia Nomor 10 Tahun 2009 Tentang Keparwisataan,” Kementerian Keuangan RI, 2009. https://jdih.kemenkeu.go.id/fullText/2009/10TAHUN2009UU.HTM#:~:text=Daerah tujuan pariwisata yang selanjutnya,saling terkait dan melengkapi terwujudnya
DKI, “Data Terbuka Pemerintah Provinsi DKI Jakarta,” Provinsi Jakarta, 2020. https://data.jakarta.go.id/
C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer-Verlag, 2006.
L. Ardiansyah and S. A. Awalludin, “Implementation of the K-Mean Algorithm to Determine the Level of Student Satisfaction with the Online Learning Uhamka System (OLU),” J. Pembelajaran Dan Mat. Sigma, vol. 9, no. 1, pp. 162–171, 2023, doi: 10.36987/jpms.v9i1.4121.
F. Grandoni, R. Ostrovsky, Y. Rabani, L. J. Schulman, and R. Venkat, “A refined approximation for Euclidean k-means,” Inf. Process. Lett., vol. 176, p. 106251, 2022, doi: 10.1016/j.ipl.2022.106251.
K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering models for hospitals in Jakarta using fuzzy c-means and k-means,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 356–363, 2023, doi: 10.1016/j.procs.2022.12.146.
N. H. M. M. Shrifan, M. F. Akbar, and N. A. M. Isa, “An adaptive outlier removal aided k-means clustering algorithm,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6365–6376, 2022, doi: 10.1016/j.jksuci.2021.07.003.
A. Aditya, N. B. Sari, and T. N. Padilah, “Perbandingan pengukuran jarak Euclidean dan Gower pada klaster k-medoids,” J. Teknol. dan Sist. Komput., vol. 9, no. 1, pp. 1–7, 2021, doi: 10.14710/jtsiskom.2021.13747.
T. M. Ghazal et al., “Performances of k-means clustering algorithm with different distance metrics,” Intell. Autom. Soft Comput., vol. 30, no. 2, pp. 735–742, 2021, doi: 10.32604/iasc.2021.019067.
R. Suwanda, Z. Syahputra, and E. M. Zamzami, “Analysis of Euclidean Distance and Manhattan Distance in the K-Means Algorithm for Variations Number of Centroid K,” J. Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012058.
R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis Silhouette Coefficientpada 6 Perhitungan Jarak K-Means Clustering Silhouette Coefficient Analysis in 6 Measuring Distancesof K-Means Clustering,” Techno.COM, vol. 20, no. 2, pp. 186–197, 2021.
W. Wahyu Pribadi, A. Yunus, and A. S. Wiguna, “Perbandingan Metode K-Means Euclidean Distance Dan Manhattan Distance Pada Penentuan Zonasi Covid-19 Di Kabupaten Malang,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 493–500, 2022, doi: 10.36040/jati.v6i2.4808.
Y. Miftahuddin, S. Umaroh, and F. R. Karim, “Perbandingan Metode Perhitungan Jarak Pada Kehadiran Karyawan Institut Teknologi Nasional Bandung,” J. Tekno Insentif, vol. 14, no. 2, pp. 69–77, 2020.
V. S. Thalapala and K. Guravaiah, “FCMCP: Fuzzy C-Means for Controller Placement in Software Defined Networking,” Procedia Comput. Sci., vol. 201, no. 1, pp. 109–116, 2022, doi: 10.1016/j.procs.2022.03.017.
P. D. Jakrata, “Data Jumlah Kunjungan Wisatawan Mancanegara ke Destinasi Wisata di Provinsi DKI Jakarta Tahun 2020,” 2020. https://data.jakarta.go.id/dataset/data-jumlah-kunjungan-wisatawan-mancanegara-ke-destinasi-wisata-di-provinsi-dki-jakarta-tahun-2021
P. D. Jakarta, “Data Jumlah Kunjungan Wisatawan Mancanegara ke Destinasi Wisata di Provinsi DKI Jakarta Tahun 2021,” Jakarta Open Data, 2021. https://data.jakarta.go.id/dataset/data-jumlah-kunjungan-wisatawan-mancanegara-ke-destinasi-wisata-di-provinsi-dki-jakarta-tahun-2021
F. Jin, M. Chen, W. Zhang, Y. Yuan, and S. Wang, “Intrusion detection on internet of vehicles via combining log-ratio oversampling, outlier detection and metric learning,” Inf. Sci. (Ny)., vol. 579, pp. 814–831, 2021.
P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. 2005.
K. P. Murphy, Machine Learning: A Probabilistic Perspective. London: MIT Press, 2012.
C. Aggarawal, Data Clustering Algoritms and Applications. Florida: CRC Press, 2014.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Metode Perhitungan Jarak K-Means Paling Baik Terhadap Pembentukan Pola Kunjungan Wisatawan Mancanegara
Pages: 159-166
Copyright (c) 2023 Lalu Mutawalli, Sofiansyah Fadli, Supardianto Supardianto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















