Komparasi CNN dengan ResNet Untuk Klasifikasi Paling Akurat Tingkat Keganasan Diabetes Berdasarkan Citra Retinopathy
Abstract
Diabetes becomes an infectious disease that has a very significant increase, it's increasing not only in old age or even suffered by a young age. Based on the Data and Information Center of the Ministry of Health of the Republic of Indonesia, the prevalence of diabetes is 9% in female genitals and 9.65% in male genitals and is estimated to increase to 19.9% with the addition of population age. Currently, the Machine Learning (Depp learning) approach is widely used in carrying out the calcification of medical image data. Retinopathy Diabetes image data can be used as material to build a classification model by utilizing the Convolutional Neural Network (CNN) algorithm and Residual Network (ResNet). The test results in the model developed in this study were the comparison showing the accuracy level of CNN 68.49% while the ResNet was 81.23%, in the CNN loss test 32.57% while the ResNet was 12.59%. In the Scenario of the application of Learning Rate 0.0005 also the ResNet is better than CNN, in the CNN Learning Rate Application Scenario producing an accuracy value of 68.49% while the ResNet adopts an accuracy value of 81.84% and on the CNN loss value of 20.14 while the 10.2% Resnet has a higher level of accuracy has a higher accuracy rate Compared to CNN and the application of learning rates it also affects in building a more accurate model in the case study of Retinopathy Diabetes.
Downloads
References
KemenKes RI, Buku Pedoman Penyakit Tidak Menular. Jakarta: Kementerian Kesehatan Republik Indonesia, 2019. [Online]. Available: http://p2ptm.kemkes.go.id
A. Ma’ruf, InfoDATIN Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia. Jakarta: Kementerian Kesehatan Republik Indonesia, 2020.
A. Pelapelapon, “Mengenal Lebih Dekat Diabetes Militus,” Rumah Sakit Gigi dan Mulut Maranatha, 2020. https://rsgm.maranatha.edu/2020/07/14/mengenal-lebih-dekat-diabetes/ (accessed Feb. 21, 2023).
J. Hsu, “Diabetic Retinopathy,” American Academy of Ophthalmology, 2022. https://eyewiki.aao.org/Diabetic_Retinopathy (accessed Jan. 27, 2023).
Gov, “Your guide to diabetic retinopathy,” Government Digital Service United Kingdom, 2022. https://www.gov.uk/government/publications/diabetic-retinopathy-description-in-brief/your-guide-to-diabetic-retinopathy (accessed Feb. 03, 2023).
D. Zhu, “What Is Proliferative Diabetic Retinopathy,” Verywell Health, 2022. https://www.verywellhealth.com/proliferative-diabetic-retinopathy-6544950 (accessed Feb. 03, 2023).
S. S. Zahra, “Mengenal Retinopati Diabetik Penyebab Kebutaan pada Penyandang Diabetes Melitus,” Rumah Sakit Universitas Indonesia, 2022. https://rs.ui.ac.id/umum/berita-artikel/artikel-populer/mengenal-retinopati-diabetik-penyebab-kebutaan-pada-penyandang-diabetes-melitus (accessed Feb. 21, 2023).
R. Chandra, N. Bohdan, and A. Dharma, “Jurnal Penelitian Pos dan Informatika COMPARISON OF CONVOLUTIONAL NEURAL NETWORK MODEL IN CLASSIFICATION OF DIABETIC RETINOPATHY PERBANDINGAN MODEL CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI RETINOPATI DIABETES,” vol. 9, no. 2, pp. 141–150, 2019, doi: 10.17933/jppi.2019.090205.
G. A. S. Tri Asruti, “Analisis Citra Penyakit Diabetic Retinopathy Berdasarkan Algoritme Jaringan Syaraf Tiruan,” J. Rekayasa Sist. dan Teknol. Inf., vol. 4, no. 2, pp. 201–209, 2020.
R. Tyasnurita and A. Y. M. Pamungkas, “Deteksi Diabetik Retinopati menggunakan Regresi Logistik,” Ilk. J. Ilm., vol. 12, no. 2, pp. 130–135, 2020, doi: 10.33096/ilkom.v12i2.578.130-135.
P. Subarkah, M. M. Abdallah, and S. O. N. Hidayah, “Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy,” CogITo Smart J., vol. 7, no. 1, pp. 121–134, 2021, doi: 10.31154/cogito.v7i1.304.121-134.
M. S. Patil, S. Chickerur, C. Abhimalya, and A. Naik, “ScienceDirect E ff ective Deep Learning Data Augmentation Techniques for E ff ective Deep Learning Data Augmentation Techniques for Diabetic Retinopathy Classification Diabetic Retinopathy Classification,” Procedia Comput. Sci., vol. 218, pp. 1156–1165, 2023, doi: 10.1016/j.procs.2023.01.094.
S. K. R. Meruva, V. G. S. Tulasi, N. Vinnakota, and V. Bhavana, “Risk Level Prediction of Diabetic Retinopathy based on Retinal Images using Deep Learning Algorithm,” Procedia Comput. Sci., vol. 215, no. 2022, pp. 722–730, 2022, doi: 10.1016/j.procs.2022.12.074.
M. R. Islam et al., “Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images,” Comput. Biol. Med., vol. 146, no. April, p. 105602, 2022, doi: 10.1016/j.compbiomed.2022.105602.
A. Mohanarathinam, C. S. Manikandababu, N. B. Prakash, and G. R. Hemalakshmi, “Diabetic Retinopathy Detection and Classification using Hybrid Multiclass SVM Classifier and Deeplearning Techniques,” vol. 71, no. 3, pp. 891–903, 2022.
A. E. Minarno et al., “Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network,” Int. J. Informatics Vis., vol. 6, no. 1, pp. 12–18, 2022.
H. N. Huynh, M. T. Do, G. T. Huynh, A. T. Tran, and T. N. Tran, “Classification of Stages Diabetic Retinopathy Using MobileNetV2 Model,” vol. 4, pp. 147–135, 2022, doi: 10.29007/h46n.
C. Priyadharsini, J. Jeyapriya, R. Jagadeesh Kannan, G. Bharadwaja Kumar, and T. Prasad Sakriki, “Classification of Diabetic Retinopathy using Residual Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 925, no. 1, 2020, doi: 10.1088/1757-899X/925/1/012033.
L. Dai et al., “A deep learning system for detecting diabetic retinopathy across the disease spectrum,” Nat. Commun., vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-23458-5.
M. Sewak, R. Karim, and P. Pujari, Practical Convolutional Neural Networks. Mumbai: Pack Publishing, 2018.
R. Rokhana et al., “Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, p. 59, 2019, doi: 10.22146/jnteti.v8i1.491.
M. O. Khairandish, M. Sharma, V. Jain, J. M. Chatterjee, and N. Z. Jhanjhi, “A Hybrid CNN-SVM Threshold Segmentation Approach for Tumor Detection and Classification of MRI Brain Images,” Innov. Res. Biomed. Eng., vol. 43, no. 4, pp. 290–299, 2022, doi: 10.1016/j.irbm.2021.06.003.
M. Gaderzadeh, M. Aria, A. Hosseini, F. Asadi, D. Bashas, and H. Abdolgasemi, “A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images,” Int. J. Intell. Syst., vol. 37, no. 8, pp. 5113–5133, 2022.
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer,” Procedia Comput. Sci., vol. 179, no. 2019, pp. 423–431, 2021, doi: 10.1016/j.procs.2021.01.025.
A. Victor Ikechukwu, S. Murali, R. Deepu, and R. C. Shivamurthy, “ResNet-50 vs VGG-19 vs training from scratch: A comparative analysis of the segmentation and classification of Pneumonia from chest X-ray images,” Glob. Transitions Proc., vol. 2, no. 2, pp. 375–381, 2021, doi: 10.1016/j.gltp.2021.08.027.
K. Tandon, “Diabetic Retinopathy Datasets,” Kaggle, 2021. https://www.kaggle.com/datasets/kushagratandon12/diabetic-retinopathy-balanced (accessed Jan. 02, 2023).
M. Elgendy, Deep Learning for System Vision. Wasington DC: Maning, 2019.
Tensorflow, “Utilies for Image Preprocessing and Augmentatio,” Tensorflow, 2022. https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image (accessed Jan. 10, 2023).
F. H. Syahrul and P. S. Sasongko, “Penerapan Convolutional Neural Network Untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik Pada Penderita Diabetes Melitus,” J. Masy. Inform., vol. 13, no. 1, pp. 1–13, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi CNN dengan ResNet Untuk Klasifikasi Paling Akurat Tingkat Keganasan Diabetes Berdasarkan Citra Retinopathy
Pages: 522-529
Copyright (c) 2023 Lalu Mutawalli, Mohammad Taufan Asri Zaen, Yuliadi Yuliadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).