Glove Detection System on Laboratory Members Using Yolov4


  • Abdul Khaliq Al Bari Telkom University, Bandung, Indonesia
  • Ema Rachmawati * Mail Telkom University, Bandung, Indonesia
  • Gamma Kosala Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: Detection; Glove; Yolov4; Laboratory; Hyperparameter

Abstract

The use of gloves by laboratory workers has become mandatory in laboratory work intending to maintain the safety of workers from the spread or side effects carried out in the laboratory, but there are still workers who violate the rules by not using gloves when workers are in the laboratory room. This study aims to detect the use of gloves by laboratory workers. The method used in this research is You Only Look Once (YOLO) version 4. YOLOv4 has a system that can complete computer visual tasks in detecting and detecting objects quickly in real time. Based on the results of experiments and testing conducted, the model obtain an Average IoU of 55.56%.

Downloads

Download data is not yet available.

References

A. Galasso Hong Luo Brooklynn Zhu et al., “Laboratory Safety and Research Productivity,” Research Policy, vol. 52, no. 8, 2023, doi: 10.1016/j.respol.2023.104827.

A. D. Ménard and J. F. Trant, “A review and critique of academic lab safety research,” Nature Chemistry, vol. 12, no. 1. Nature Research, pp. 17–25, Jan. 01, 2020. doi: 10.1038/s41557-019-0375-x.

R. M. Broyer, K. Miller, S. Ramachandran, S. Fu, K. Howell, and S. Cutchin, “Using Virtual Reality to Demonstrate Glove Hygiene in Introductory Chemistry Laboratories,” J Chem Educ, vol. 98, no. 1, pp. 224–229, Jan. 2021, doi: 10.1021/acs.jchemed.0c00137.

Y. Yang, G. Reniers, G. Chen, and F. Goerlandt, “A bibliometric review of laboratory safety in universities,” Safety Science, vol. 120. Elsevier B.V., pp. 14–24, Dec. 01, 2019. doi: 10.1016/j.ssci.2019.06.022.

M. Jin et al., “Glove detection system based on VGG-16 network,” in Proceedings - 2020 13th International Symposium on Computational Intelligence and Design, ISCID 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 172–175. doi: 10.1109/ISCID51228.2020.00045.

Y. C. How, A. F. Ab. Nasir, K. F. Muhammad, A. P. P. Abdul Majeed, M. A. Mohd Razman, and M. A. Zakaria, “Glove Defect Detection Via YOLO V5,” MEKATRONIKA, vol. 3, no. 2, pp. 25–30, Jan. 2022, doi: 10.15282/mekatronika.v3i2.7342.

R. Syamsul Huda, R. Wulanningrum, and D. Swanjaya, “Pemanfaatan YOLOv4 Untuk Deteksi Pelanggaran Helm dan Masker Serta Identifikasi Pelat Nomor Menunggunakan Tesseract-OCR,” Joutica: Journal of Informatic Unisla, 7(2), 2022, 596-602.

J. Nuralim, N. Fath, A. Musafa, and S. Broto, “Perancangan Sistem Pendeteksian Obyek Bola Dengan Metode Framework YOLOv4,” Jurnal Maestro, vol. 5, no. 2, 2022, pp. 289-294.

A. Nurfirmansyah and R. Dijaya, “Deteksi Kelalaian Alat Pelindung Diri (APD) Pada Pekerja Konstruksi Bangunan,” Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 6(1), 058–063, Aug. 2022, Doi: 10.29407/inotek.v6i1.2452.

T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using YOLO: challenges, architectural successors, datasets and applications,” Multimed Tools Appl, vol. 82, no. 6, pp. 9243–9275, Mar. 2023, doi: 10.1007/s11042-022-13644-y.

N. Balla, H. Kumar, and V. P. Mishra, “Health and safety Protocols in Chemistry laboratory and its Precursors Disposal with Chemical Incompatibility,” in Proceedings of 2nd IEEE International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 166–169. doi: 10.1109/ICCIKE51210.2021.9410763.

C. Dewi, R. C. Chen, Y. T. Liu, X. Jiang, and K. D. Hartomo, “Yolo V4 for Advanced Traffic Sign Recognition with Synthetic Training Data Generated by Various GAN,” IEEE Access, vol. 9, pp. 97228–97242, 2021, doi: 10.1109/ACCESS.2021.3094201.

E. R. Setyaningsih and M. S. Edy, “YOLOv4 dan Mask R-CNN Untuk Deteksi Kerusakan Pada Karung Komoditi,” Teknika, vol. 11, no. 1, pp. 45–52, Mar. 2022, doi: 10.34148/teknika.v11i1.419.

B. Chethan Kumar, R. Punitha, and Mohana, “YOLOv3 and YOLOv4: Multiple object detection for surveillance applications,” in Proceedings of the 3rd International Conference on Smart Systems and Inventive Technology, ICSSIT 2020, Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 1316–1321. doi: 10.1109/ICSSIT48917.2020.9214094.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.10934

W. Rahmaniar and A. Hernawan, “Real-time human detection using deep learning on embedded platforms: A review,” Journal of Robotics and Control (JRC), vol. 2, no. 6. Department of Agribusiness, Universitas Muhammadiyah Yogyakarta, pp. 462-468Y, Nov. 01, 2021. doi: 10.18196/jrc.26123.

T. A. A. H. Kusuma, K. Usman, and S. Saidah, “People Counting For Public Transportations Using You Only Look Once Method,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 57–66, Feb. 2021, doi: 10.20884/1.jutif.2021.2.2.77.

O. ÖNAL and E. DANDIL, “Object Detection for Safe Working Environments using YOLOv4 Deep Learning Model,” European Journal of Science and Technology, Jun. 2021, doi: 10.31590/ejosat.951733.

R. Dagli and A. M. Shaikh, “CPPE-5: Medical Personal Protective Equipment Dataset,” SN Comput Sci, vol. 4, no. 3, May 2023, doi: 10.1007/s42979-023-01748-7.

Y. Ji, H. Zhang, Z. Zhang, and M. Liu, “CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances,” Inf Sci (N Y), vol. 546, pp. 835–857, Feb. 2021, doi: 10.1016/j.ins.2020.09.003.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Glove Detection System on Laboratory Members Using Yolov4

Dimensions Badge
Article History
Submitted: 2023-07-07
Published: 2023-07-31
Abstract View: 215 times
PDF Download: 185 times
How to Cite
Al Bari, A., Rachmawati, E., & Kosala, G. (2023). Glove Detection System on Laboratory Members Using Yolov4. Journal of Information System Research (JOSH), 4(4), 1270-1276. https://doi.org/10.47065/josh.v4i4.3806
Issue
Section
Articles