Mask Detection on Motorcyclists Using YOLOv4


  • Salma Salsabila Firdauz Telkom University, Bandung, Indonesia
  • Ema Rachmawati * Mail Telkom University, Bandung, Indonesia
  • Mahmud Dwi Sulistiyo Telkom University, Bandung, Indonesia
  • (*) Corresponding Author
Keywords: COVID-19; Mask; Detection; Motorcyclist; YOLOv4

Abstract

The use of mask is a mandatory for everyone in the pandemic regulation to prevent the spread of COVID-19 infection. This becomes a pandemic regulation for everyone, especially in public places like in traffic situation, such as pedestrian and motorcyclists. However, many motorcyclists ignore this rule or do not use the mask properly, let alone they have high risk in being infected by the virus; Thus, a computer vision-based solution is required to help monitoring it. This study aims to built a system to automatically detect the use of mask on motorcyclists. Here, we propose a YOLOv4 model, one of YOLO variants, which is popular in the object detection task and featured with a considerably high speed in real-time situation. This study also implements domain adaptation to discuss the object detection performances. Based on the experimental results in various scenarios, our model obtained average accuracy of 78.3% and IoU of 64.8% for class with_mask, average accuracy of 78.4% and IoU of 56.3% for class without_mask, and average accuracy of 87% and IoU of 55.5% for class incorrect_mask

Downloads

Download data is not yet available.

References

I. Madabhavi, M. Sarkar, and N. Kadakol, “CoviD-19: A review,” Monaldi Archives for Chest Disease, vol. 90, no. 2, pp. 248–258, 2020, doi: 10.4081/monaldi.2020.1298.

B. Blocken, F. Malizia, T. van Druenen, and T. Marchal, “Towards aerodynamically equivalent COVID19 1.5 m social distancing for walking and running,” 2020.

H. Sukmana, “Implementation of The Policy of The Minister of Health of The Republic of Indonesia Concerning The Health Protocol for The Community in Place and Public Facilities to Press The Spread of Covid-19 in The Sidoarjo Area,” Jurnal Kebijakan dan Manajemen Publik, vol. 9, no. 1, pp. 1–9, Mar. 2021, doi: 10.21070/jkmp.v9i1.1554.

D. Giancini, E. Y. Puspaningrum, and Y. V. Via, “Identifikasi Penggunaan Masker Menggunakan Algoritma CNN YOLOv3-Tiny,” Seminar Nasional Informatika Bela Negara, vol. 1, 2020, doi: doi.org/10.33005/santika.v1i0.41.

S. B. Setyawan, W. Pribadi, H. Arrosida, and E. P. Nugroho, “Sistem Deteksi Pengendara Sepeda Motor Tanpa Helm dan Kelebihan Penumpang pada Dengan Menggunakan YOLO V3,” Seminar Nasional Terapan Riset Inovatif, vol. 7, no. 1, pp. 430–438, 2021.

Albert, K. Gunadi, and E. Setyati, “Deteksi Helm pada Pengguna Sepeda Motor dengan Metode Convolutional Neural Network,” Jurnal Infra, vol. 8, no. 1, pp. 295–301, 2020.

G. A. Anarki, K. Auliasari, and M. Orisa, “Penerapan Metode Haar Cascade Pada Aplikasi Deteksi Masker,” Jurnal Mahasiswa Teknik Informatika, vol. 5, no. 1, pp. 179–186, 2021, doi: 10.36040/jati.v5i1.3214.

S. N. P. Putri, M. al Fikih, and N. Setyawan, “Face Mask Detection Covid-19 Using Convolutional Neural Network (CNN),” Seminar Teknologi dan Rekayasa, no. 6, pp. 27–32, 2021, doi: 10.22219/sentra.v0i6.3801.

C. Z. Basha, B. N. L. Pravallika, and E. B. Shankar, “An efficient face mask detector with pytorch and deep learning,” EAI Endorsed Trans Pervasive Health Technol, vol. 7, no. 25, pp. 1–8, 2021, doi: 10.4108/eai.8-1-2021.167843.

H. Ding, M. A. Latif, Z. Zia, M. A. Habib, M. A. Qayum, and Q. Jiang, “Facial Mask Detection Using Image Processing with Deep Learning,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/8220677.

K. R. B. Legaspi, N. W. S. Sison, and J. F. Villaverde, “Detection and Classification of Whiteflies and Fruit Flies Using YOLO,” in 2021 13th International Conference on Computer and Automation Engineering, ICCAE 2021, Mar. 2021, pp. 1–4. doi: 10.1109/ICCAE51876.2021.9426129.

W. Rahmaniar and A. Hernawan, “Real-time human detection using deep learning on embedded platforms: A review,” Journal of Robotics and Control (JRC), vol. 2, no. 6. Department of Agribusiness, Universitas Muhammadiyah Yogyakarta, pp. 462-468Y, Nov. 01, 2021. doi: 10.18196/jrc.26123.

H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression,” 2019.

T. A. A. H. Kusuma, K. Usman, and S. Saidah, “People Counting for Public Transportations Using You Only Look Once Method,” Jurnal Teknik Informatika, vol. 2, no. 1, pp. 57–66, Feb. 2021, doi: 10.20884/1.jutif.2021.2.2.77.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” IEEE Conference on Computer Vision and Pattern Recognition, 2016, doi: 10.1109/CVPR.2016.91.

S. Jupiyandi, F. R. Saniputra, Y. Pratama, M. R. Dharmawan, and I. Cholissodin, “Pengembangan Deteksi Citra Mobil Untuk Mengetahui Jumlah Tempat Parkir Menggunakan Cuda dan Modified YOLO,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 4, pp. 413–419, 2019, doi: 10.25126/jtiik.201961275.

B. Widodo, H. Armanto, and E. Setyati, “Deteksi Pemakaian Helm Proyek Dengan Metode Convolutional Neural Network,” Journal of Intelligent System and Computation, pp. 23–29, 2021, doi: 10.52985/insyst.v3i1.157.

K. A. Shianto, K. Gunadi, and E. Setyati, “Deteksi Jenis Mobil Menggunakan Metode YOLO Dan Faster R-CNN,” Jurnal Infra, vol. 7, no. 1, pp. 157–163, 2019.

H. Wen, F. Dai, and Y. Yuan, “A Study of YOLO Algorithm for Target Detection,” J. Adv. Inn Artif. Life Robot 2, pp. 287–290, 2021, [Online]. Available: www.tust.edu.cn

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, doi: 10.48550/arXiv.2004.10934.

F. Rofii, G. Priyandoko, M. I. Fanani, and A. Suraji, “Vehicle Counting Accuracy Improvement By Identity Sequences Detection Based on Yolov4 Deep Neural Networks,” TEKNIK, vol. 42, no. 2, pp. 169–177, Aug. 2021, doi: 10.14710/teknik.v42i2.37019.

Z. Yang, I. S. Bozchalooi, and E. Darve, “Anomaly Detection with Domain Adaptation,” Jun. 2020, doi: 10.48550/arXiv.2006.03689.

“Face Mask Detection,” Kaggle. https://www.kaggle.com/datasets/andrewmvd/face-mask-detection (accessed Nov. 30, 2022)


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Mask Detection on Motorcyclists Using YOLOv4

Dimensions Badge
Article History
Submitted: 2023-01-19
Published: 2023-03-29
Abstract View: 302 times
PDF Download: 282 times
How to Cite
Firdauz, S., Rachmawati, E., & Sulistiyo, M. (2023). Mask Detection on Motorcyclists Using YOLOv4. Building of Informatics, Technology and Science (BITS), 4(4), 1754−1763. https://doi.org/10.47065/bits.v4i4.2980
Issue
Section
Articles