Implementasi Algoritma Backpropagation Neural Networks Untuk Memprediksi Hasil Kinerja Dosen


  • Samsudin Samsudin Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Ali Ikhwan * Mail Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Raissa Amanda Putri Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Mohammad Badri Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Algorithm; Neural Network; Backpropagation; Prediction; Lecturer Performance

Abstract

In improving the quality of education in tertiary institutions, one of the efforts made to make it happen is to place qualified and professional educators or lecturers at these universities. A lecturer must have the ability to carry out the tridharma of higher education. A lecturer must also be able to follow the development of science and always be able to develop himself and have good teaching skills according to his field of knowledge, from planning, implementation to evaluation of learning. To predict the performance of lecturers using the Backpropagation Neural Networks algorithm. The design of the application to predict the performance of lecturers with the Backpropagation Neural Networks algorithm is done by determining the number of units for each layer. After the network is formed, training is carried out from the patterned data. Tests were carried out using Matlab software with several forms of network architecture. The architecture with the best configuration consists of 24 input layers, 20 hidden layers and 5 output layers. The results obtained from the test are predictions of lecturer performance which consist of Very Poor, Less, Enough, Good, Very Good. This assessment serves to evaluate the performance of lecturers in each semester at higher education institutions. with a test accuracy of 95%.

Downloads

Download data is not yet available.

References

U.-U. R. Indonesia, Undang-Undang Republik Indonesia tentang Pendidikan Tinggi, vol. No. 12. 2012.

UIN Sumatera Utara Medan, “Rubrik BKD Lengkap ". 2018.

S. Prashant Mahasagara, A. Alamsyah, and B. Rikumahu, “Indonesia infrastructure and consumer stock portfolio prediction using artificial neural network backpropagation,” 2017. doi: 10.1109/ICoICT.2017.8074710.

A. Dzikri and D. E. Kurniawan, “Hand Gesture Recognition for Game 3D Object Using The Leap Motion Controller with Backpropagation Method,” 2018. doi: 10.1109/INCAE.2018.8579400.

A. N. Handayani, N. Lathifah, H. W. Herwanto, R. Andrie Asmara, and K. Arai, “Neural network Bayesian regularization backpropagation to solve inverse kinematics on planar manipulator,” 2019. doi: 10.1109/ICIEV.2018.8640958.

B. Satria, “Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 74–84, 2018.

N. Islam, R. Islam, J. Rana, and H. U. Zaman, “A Novel Design of A Dual-Powered Automatic Peltier Effect Cooler,” 2020. doi: 10.1109/TENSYMP50017.2020.9231037.

O. Adigun and B. Kosko, “Bayesian Bidirectional Backpropagation Learning,” in Proceedings of the International Joint Conference on Neural Networks, 2021, vol. 2021-July. doi: 10.1109/IJCNN52387.2021.9533873.

Y. Chu, J. Fei, and S. Hou, “Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 4, 2020, doi: 10.1109/TNNLS.2019.2919676.

J. Amrutha and A. S. Remya Ajai, “Performance analysis of backpropagation algorithm of artificial neural networks in verilog,” 2018. doi: 10.1109/RTEICT42901.2018.9012614.

R. Hartl, B. Praehofer, and M. F. Zaeh, “Prediction of the surface quality of friction stir welds by the analysis of process data using Artificial Neural Networks,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 234, no. 5, 2020, doi: 10.1177/1464420719899685.

T. Liu, H. Mei, Q. Sun, and H. Zhou, “Application of neural network in fault location of optical transport network,” China Commun., vol. 16, no. 10, 2019, doi: 10.23919/JCC.2019.10.014.

U. Andayani, E. B. Nababan, B. Siregar, M. A. Muchtar, T. H. Nasution, and I. Siregar, “Optimization backpropagation algorithm based on Nguyen-Widrom adaptive weight and adaptive learning rate,” 2017. doi: 10.1109/IEA.2017.7939239.

A. Agnes Lydia and F. Sagayaraj Francis, “Convolutional neural network with an optimized backpropagation technique,” 2019. doi: 10.1109/ICSCAN.2019.8878719.

S. Bianco, M. Buzzelli, G. Ciocca, and R. Schettini, “Neural architecture search for image saliency fusion,” Inf. Fusion, vol. 57, 2020, doi: 10.1016/j.inffus.2019.12.007.

Y. Liu, Z. Zhang, X. Liu, L. Wang, and X. Xia, “Ore image classification based on small deep learning model: Evaluation and optimization of model depth, model structure and data size,” Miner. Eng., vol. 172, 2021, doi: 10.1016/j.mineng.2021.107020.

F. C. Soon, H. Y. Khaw, J. H. Chuah, and J. Kanesan, “PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 2, 2019, doi: 10.1109/TITS.2018.2833620.

Z. Zhong, T. R. Carr, X. Wu, and G. Wang, “Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA,” Geophysics, vol. 84, no. 6, 2019, doi: 10.1190/geo2018-0588.1.

S. Fahd, M. Afzal, H. Abbas, W. Iqbal, and S. Waheed, “Correlation power analysis of modes of encryption in AES and its countermeasures,” Futur. Gener. Comput. Syst., vol. 83, pp. 496–509, 2018, doi: 10.1016/j.future.2017.06.004.

W. Aribowo, S. Muslim, Munoto, B. Suprianto, U. T. Kartini, and I. G. P. Asto Buditjahjanto, “Tuning of Power System Stabilizer Using Cascade Forward Backpropagation,” 2020. doi: 10.1109/ICVEE50212.2020.9243204.

C. Migliaccio, C. Pichot, I. Platt, A. Tan, and I. Woodhead, “Evaluation of Backpropagation Reconstruction Algorithm for 3D Microwave Imaging of Body Part Anomalies,” 2020. doi: 10.1109/IEEECONF35879.2020.9329842.

S. A. Zulkifli, M. F. M. F. Tan, and M. J. M. Yusof, “Study on Power Converters Control in Hardware System Using Low Cost Microcontroller,” 2020. doi: 10.1109/SCOReD50371.2020.9251039.

V. C. Georgopoulos, A. T. Rajappa, K. Soriano, C. Zeimer, and G. Malandraki, “Feasibility of a neural network in predicting aspiration severity post supratentorial stroke,” Dysphagia, vol. 34, no. 6, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Backpropagation Neural Networks Untuk Memprediksi Hasil Kinerja Dosen

Dimensions Badge
Article History
Submitted: 2022-12-15
Published: 2023-01-21
Abstract View: 690 times
PDF Download: 738 times
How to Cite
Samsudin, S., Ikhwan, A., Putri, R., & Badri, M. (2023). Implementasi Algoritma Backpropagation Neural Networks Untuk Memprediksi Hasil Kinerja Dosen. Journal of Information System Research (JOSH), 4(2), 410-417. https://doi.org/10.47065/josh.v4i2.2685
Section
Articles

Most read articles by the same author(s)