Analisis Klasterisasi Mahasiswa Baru dalam Memilih Program Studi dengan Menggunakan Algoritma K-Means
Abstract
Kuantan Singingi Islamic University is a private university located in Riau Province with a population of 345,850 people. Kuantan Singingi Islamic University has 12 Study Programs with 1700 active students, from 2013-2021 the number of new students at Kuantan Singingi Islamic University there was an increase and decrease in new students, a significant decrease in the number of new students occurred in 2019 and 2020, The decrease in the number of new students makes several study programs have a ratio of lecturers to students that is not comparable and can harm the institution, by clustering new students in choosing the desired study program. the goal is as a material consideration for leaders to determine strategies in increasing the number of students in the future. The K-Means algorithm is one of the algorithms in data mining that can be used to cluster data, by grouping the data, it can be seen that the number of students in each study program increases or decreases, from these results can be used as evaluation material by the leadership for an increase in new students in each study program so that study programs that have a disproportionate ratio of lecturers to students are in line with what is expected, the ideal ratio of lecturers and students according to the 2012 higher education law is 1:20 for exact sciences and 1 :30 for Social Science.
Downloads
References
U. I. K. Singingi, “Sejarah UNIKS.” Teluk Kuantan, 2022, [Online]. Available: https://uniks.ac.id/pages/54/Sejarah-UNIKS.html.
BPS Riau, “Badan Pusat Statistik Provinsi Riau,” 2014. Teluk Kuantan, p. https://sulsel.bps.go.id/index.php/linkTabelStatis, 2020, [Online]. Available: https://riau.bps.go.id/riau.bps.go.id › statictable › 2017/01/24 ›%0AProduksi Tanaman Buah-buahan.
Panitia, Laporan Kegiatan Penerimaan Mahasiswa Baru. Teluk Kuantan: PMB, 2021.
Kementrian Hukum dan HAM, “UU RI No. 12/2012 tentang Pendidikan Tinggi,” Undang Undang, p. 18, 2012.
Kementerian Hukum dan Hak Asasi Manusia, “Peraturan Pemerintah RI Nomor 04 Tahun 2014 tentang Penyelenggaraan Pendidikan Tinggi dan Pengelolaan Perguruan Tinggi,” Standar Nas. Pendidik., p. 37, 2014, [Online]. Available: https://peraturan.bpk.go.id/Home/Details/5441/pp-no-4-tahun-2014.
F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K-Means Clustring Pada Penerimaan Mahasiswa Baru (STUDI KASUS : UNIVERSITAS ISLAM INDRAGIRI),” Sistemasi, vol. 7, no. 3, pp. 238–249, 2018.
F. Haswan and H. Nopriandi, “Kombinasi Metode Fuzzy Multiple Attribute Decision Making (FMADM) dan Simple Additive Weighting (SAW) Untuk Menentukan Calon Reviewer Internal Universitas Islam Kuantan Singingi,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 432–440, 2021, doi: 10.47065/bits.v3i3.1136.
M. Hasyim Siregar, “Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means,” J. Teknol. DAN OPEN SOURCE, vol. 1, no. 2, pp. 83–91, 2018.
A. Rohmah, F. Sembiring, and ..., “Implementasi Algoritma K-Means Clustering Analysis Untuk Menentukan Hambatan Pembelajaran Daring (Studi Kasus: Smk Yaspim …,” … Sist. Inf. dan …, pp. 290–298, 2021, [Online]. Available: https://sismatik.nusaputra.ac.id/index.php/sismatik/article/view/32.
P. Subekti, T. D. Andini, and M. Islamiyah, “Sistem Penentuan Konsentrasi Jurusan Bagi Mahasiswa Informatika Menggunakan Metode K-Means Di Institut Asia Malang Determination System for Department Concentration for Informatics Students Using the K-Means Method at the Institute of Asia Malang,” vol. 12, no. April, pp. 25–39, 2022.
N. Putu, E. Merliana, and A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means,” pp. 978–979.
Zulkifli, “Penentuan Minat Program Studi Terhadap Calon Mahasiswa Baru Menggunakan Algoritma K-Means,” J. Satya Inform., vol. 3, no. 1, pp. 71–82, 2018, [Online]. Available: https://teknik.usni.ac.id/jurnal/ZULKIFLI.pdf.
L. A. Setiyo and I. F. B. Andoro, “PENERAPAN ALGORITMA K-MEANS UNTUK ( Studi Kasus : Universitas Katolik Widya Mandala Kampus Kota Madiun ),” pp. 1–8, 2021.
W. Dhuhita, “Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita,” J. Inform. Darmajaya, vol. 15, no. 2, pp. 160–174, 2015.
Y. D. Darmi and A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, vol. 12, no. 2, pp. 148–157, 2017, doi: 10.37676/jmi.v12i2.418.
S. Hasyrif, Rismayani, and S. Asrul, “PROSIDING SEMINAR ILMIAH SISTEM INFORMASI DAN TEKNOLOGI INFORMASI Pusat Penelitian dan Pengabdian Pada Masyarakat (P4M) STMIK Dipanegara Makassar Data Mining Menggunakan Algoritma K-Means Pengelompokan Penyebaran Diare Di Kota Makassar,” vol. VIII, no. 1, pp. 73–82, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Klasterisasi Mahasiswa Baru dalam Memilih Program Studi dengan Menggunakan Algoritma K-Means
Pages: 666-671
Copyright (c) 2022 Helpi Nopriandi, Febri Haswan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).






















