Perbandingan Metode Naive Bayes Classifier dan Support Vector Machine Pada Analisis Sentimen Wisata Biru Berdasarkan Ulasan Twitter, Instagram, dan Google Maps Review
Abstract
Blue tourism in Lampung Province has been recognized as a leading regional asset encompassing coastal areas, islands, and marine zones with strong appeal to visitors. Public responses toward these destinations can be captured through online reviews distributed across multiple digital platforms. In this study, the performance of sentiment classification algorithms, namely Naive Bayes Classifier and Support Vector Machine, was examined and compared using reviews related to blue tourism in Lampung. A total of 3,950 review records were collected from Twitter or X, Instagram, and Google Maps Review. The collected data were subjected to a series of preprocessing stages, including text cleaning to remove irrelevant elements, followed by theme and sentiment labeling using a semi supervised learning approach. Feature representation was generated through the Term Frequency Inverse Document Frequency method to transform textual data into numerical form. The labeling results revealed an imbalanced sentiment distribution with a strong dominance of positive sentiment. Model evaluation was conducted using an 80 to 20 split between training and testing datasets. The evaluation results indicated that the Support Vector Machine achieved an accuracy of 91.90 percent, while the Naive Bayes Classifier reached an accuracy of 90.38 percent. These findings suggest that the Support Vector Machine demonstrates superior capability in handling high dimensional textual data and imbalanced sentiment distributions. The outcomes of this study are expected to provide empirical guidance in selecting appropriate sentiment analysis algorithms to support data driven management and development of blue tourism destinations.
Downloads
References
H. Azizah, F. Syuhada, and Y. Sa, “Sentimen Analisis Tempat Wisata Berdasarkan Ulasan Google Maps Menggunakan Metode Naive Bayes ( Studi Kasus Bukit Merese ),” SIJ(SainsTech Innov. Journal), vol. 7, no. no .2, pp. 467–476, 2024, doi: https://doi.org/10.37824/sij.v7i2.2024.753.
A. M. Ndapamuri, D. Manongga, A. Iriani, U. Kristen, S. Wacana, and J. D. No, “Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine , K-Nearest Neighbor , Dan Naive Bayes,” J. INOVTEK POLBENG - SERI Inform., vol. 8, no. No.1, pp. 127–140, 2023, doi: 10.35314/isi.v8i1.3260.
A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” Tour. Manag., vol. 58, no. 2, pp. 98–115, 2019, doi: doi.org/10.1177/0047287517747753.
D. S. Utami, A. Erfina, S. S. Indormasi, and U. N. Putra, “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes Pada Dasarnya Indonesia,” J. Sains Komput. Inform., vol. 6, no. 1, pp. 418–427, 2022.
H. Liu, W. Zhang, and M. Chen, “Public Sentiment and Perception of Blue Tourism Destinations on Social Media,” J. Outdoor Recreat. Tour., vol. 44, p. 100620, 2023, doi: 10.1016/j.jort.2023.100620.
W. Khofifah, D. N. Rahayu, and A. M. Yusuf, “Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps,” J. Interkom, vol. no. 16, no. 4, pp. 1–10, 2022, doi: https://doi.org/10.35969/interkom.v16i4.192.
D. Wicaksono and I. M. A. Agastya, “Perbandingan Algoritma Support Vector Machine , Decision Tree , Naïve Bayes , dan Neural Network dalam Klasifikasi Email,” BITS J. Teknol. Inf., vol. 6, no. 4, pp. 2559–2572, 2025, doi: 10.47065/bits.v6i4.6949.
D. Siregar, F. Ladayya, N. Z. Albaqi, and B. M. Wardana, “Penerapan Metode Support Vector Machines ( SVM ) dan Metode Naïve Bayes Classifier ( NBC ) dalam Analisis Sentimen Publik Terhadap Konsep Child-free di Media Sosial Twitter,” J. Stat. dan Apl., vol. 7, no. 1, pp. 93–104, 2023, doi: https://doi.org/10.21009/JSA.07109.
S. Heristian, M. Napiah, and W. Erawati, “Analisis Sentimen Ulasan Pelanggan Menggunakan Algoritma Naive Bayes pada Aplikasi Gojek,” Comput. Sci., vol. 5, no. 1, pp. 35–41, 2025, doi: https://doi.org/10.31294/coscience.v5i1.7775.
I. Kurniawan, A. L. Hananto, S. S. Hilabi, and A. Hananto, “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” J. Sist. Inf., vol. 10, no. 1, pp. 731–740, 2023, doi: https://doi.org/10.35957/jatisi.v10i1.3582.
Y. A. Singgalen, “Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Analisis Sentimen Wisatawan Melalui Data Ulasan Candi Borobudur di Tripadvisor Menggunakan Algoritma Naïve Bayes Classifier,” Build. Informatics Technol. Sci. ·, vol. 4, no. 3, pp. 1343–1352, 2022, doi: 10.47065/bits.v4i3.2486.
O. I. Gifari, M. Adha, I. R. Hendrawan, F. Freddy, S. Durrand, and A. S. Literature, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH (Journal Informayion Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: https://doi.org/10.46229/jifotech.v2i1.330.
L. Budi and A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, 2020, doi: doi.org/10.33096/ilkom.v12i2.597.154-161.
W. Ningsih, B. Alfianda, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter Pada Penggunaan Mobil Listrik di Indonesia,” Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 556–562, 2024, doi: https://doi.org/10.57152/malcom.v4i2.1253.
V. No, Z. A. Mukharyahya, Y. P. Astuti, and O. N. Cahyani, “Perbandingan Naive Bayes dan Support Vector Machine dalam Klasifikasi Tingkat Kemiskinan di Indonesia,” Edumatic J. Pendidik. Inform., vol. 9, no. 1, pp. 119–128, 2025, doi: 10.29408/edumatic.v9i1.29512.
P. Nandwani and R. Verma, “A Review on Sentiment Analysis and Emotion Detection From Text,” Soc. Netw. Anal. Min., vol. 11, no. 1, p. 81, 2021, doi: 10.1007/s13278-021-00776-6.
A. Novanto, D. Indra, W. Astuti, U. M. Indonesia, and T. Rumah, “Analisis Pre-processing Sentimen Terhadap Komentar Layanan Indihome Pada Twitter,” Lit. iIformatika Komput., vol. 1, no. 2, pp. 145–152, 2024.
A. M. Yolanda and R. T. Mulya, “Implementasi Metode Support Vector Machine Untuk Analisis Sentimen Pada Ulasan Aplikasi Sayurbox di Google Play Store,” J. Stat. Its Appl. Teach. Res., vol. 6, no. 2, pp. 76–83, 2024, doi: 10.35580/variansiunm258.
M. F. Saleh and R. Imanda, “Public Sentiment Analysis of the Free Meal Program : A Comparison of Naive Bayes and Support Vector Machine Methods on the Twitter ( X ) Social Media Platform,” J. Appl. Informatics Comput., vol. 9, no. 1, pp. 131–139, 2025, doi: https://doi.org/10.30871/jaic.v9i1.8895.
A. F. Hidayatullah, “Pengaruh Stopword Terhadap Performa Klasifikasi Tweet Berbahasa Indonesia,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 1, no. 1, pp. 1–4, 2016, doi: 10.14421/jiska.2016.11-01.
P. Ayuningtyas, S. Khomsah, T. Informatika, F. Informatika, S. Data, and F. Informatika, “Pelabelan Sentimen Berbasis Semi-Supervised Learning Menggunakan Algoritma LSTM dan GRU,” J. Ilmu Komput. dan Inform., vol. 9, no. 3, pp. 217–229, 2024, doi: doi.org/10.14421/jiska.2024.9.3.217-229.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Metode Naive Bayes Classifier dan Support Vector Machine Pada Analisis Sentimen Wisata Biru Berdasarkan Ulasan Twitter, Instagram, dan Google Maps Review
Pages: 2136-2148
Copyright (c) 2025 Selvi Rahmadila, Debby Alita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















