Perbandingan Algoritma SVM, Random Forest, KNN untuk Analisis Sentimen Terhadap Overclaim Skincare pada Media Sosial X
Abstract
The cosmetic industry in Indonesia, especially skincare products, is growing rapidly along with changes in people's lifestyles and technological advances. One of the main issues that arise is overclaiming, which can harm consumers and damage the company's reputation. This study aims to compare the performance of three algorithms in sentiment analysis of skincare overclaims on X social media. The evaluated algorithms include Support Vector Machine (SVM), Random Forest, and K-Nearest Neighbors (KNN). The research dataset consists of 7,774 tweets collected between October 1 and November 30, 2024, with 5,559 tweets after the preprocessing stage, consisting of 4,281 negative sentiment tweets and 1,275 positive sentiment tweets. Data imbalance was addressed using the Synthetic Minority Over-sampling Technique (SMOTE), with 80% data split for training and 20% for testing. The results showed that before the application of SMOTE, the Random Forest algorithm had the highest accuracy of 95%, followed by Support Vector Machine at 91% and K-Nearest Neighbors at 80%. After the application of SMOTE, the accuracy increased significantly, with Random Forest reaching 98%, Support Vector Machine 97%, and K-Nearest Neighbors 84%. Random Forest proved to be the best algorithm, with the highest performance before and after SMOTE implementation, and was effective in handling both sentiment classes. This research provides insights for the skincare industry and regulators to detect and address product over-claiming issues through machine learning-based approaches.
Downloads
References
P. Rachmawati, “Edukasi Terkait Keamanan Kosmetik Kepada Masyarakat,” MitraMas: Jurnal Pengabdian dan Pemberdayaan Masyarakat, vol. 1, no. 2, pp. 101–113, 2023, doi: 10.25170/mitramas.v1i2.4308.
H. Hartanto and C. Wilda Meutia Syafiina, “Efektivitas Perlindungan Konsumen Terhadap Produk Kosmetik Yang Tidak Memiliki Izin Edar Balai Besar Pengawas Obat Dan Makanan Diy (Dalam Perspektif Hukum Pidana),” Jurnal Meta-Yuridis, vol. 4, no. 1, pp. 54–72, 2021, doi: 10.26877/m-y.v4i1.6765.
A. A. P. Kuncoro and M. Syamsudin, “Perlindungan Konsumen terhadap Overclaim Produk Skincare,” Prosiding Seminar Hukum Aktua, vol. Vol. 2 No., no. September, p. 82, 2024.
S. Lutfiani, R. Astuti, and Fadhil M Basysyar,M,Kom, “Analisis Sentimen Pengaruh Media Sosial Terhadap Minat Beli Skincare Pada Remaja Di Indonesia Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 2957–2961, 2024, doi: 10.36040/jati.v8i3.9614.
A. N. Putri and R. Apriani, “Perlindungan Konsumen Atas Predaran Skincare Yang Belum Mendapat Izin Edar Dari Bpom,” Jurnal Justitia: Jurnal Ilmu Hukum dan Humaniora, vol. 9, no. 3, pp. 1227–1233, 2022, doi.org/10.31604/justitia.v9i3.1227-1233.
T. Intensi, M. Ulang, and P, “Pengaruh Overclaim Produk, Kesadaran Merek, Kepuasan Konsumen, Loyalitas Konsumen, Terhadap Intensi Membeli Ulang Produk Skincare Skintific Padamahasiswa Aktif Universitas Riau Kepulauan,” Bening Journal, vol. 11, no. 1, 2024, doi.org/10.33373/bening.v11i1.6319.
M. Manik, P. A. Sipahutar, and M. R. A. Putra, “Tangung Jawab Pelaku Usaha atas Overclaim Produk Skincare di Media Sosial,” Madani: Jurnal Ilmiah Multidisiplin, vol. 2, no. 10, pp. 663–668, 2024, doi.org/10.5281/zenodo.14185081.
Nabilla Dhinggar Arumbi, Sapto Hermawan, and Asianto Nugroho, “Tanggung Jawab Pelaku Usaha Atas Overclaim Sun Protection Factor (SPF) Pada Produk Tabir Surya X,” Amandemen: Jurnal Ilmu pertahanan, Politik dan Hukum Indonesia, vol. 1, no. 2, pp. 25–34, 2024, doi: 10.62383/amandemen.v1i2.127.
A. A. L. Widawati and M. Elbana, “Kajian Litelatur Review Krisis Komunikasi Hotto Purto pada Kasus Overclaim dalam Menjaga Citra Perusahaan,” Jurnal Penelitian Inovatif, vol. 4, no. 1, pp. 113–120, 2024, doi: 10.54082/jupin.262.
H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.
A. F. Setyaningsih, D. Septiyani, and S. R. Widiasari, “Implementasi Algoritma Naïve Bayes untuk Analisis Sentimen Masyarakat pada Twitter mengenai Kepopuleran Produk Skincare di Indonesia,” Jurnal Teknologi Informatika dan Komputer, vol. 9, no. 1, pp. 224–235, 2023, doi: 10.37012/jtik.v9i1.1409.
M. H. Wicaksono, M. D. Purbolaksono, and S. Al Faraby, “Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily,” eProceedings of Engineering, vol. 10, no. 3, pp. 3591–3600, 2023.
N. Resti Wardani, S. Saepudin, and C. Warman, “Sentimen Analisis Kegiatan Trading Pada Ap-likasi Twitter dengan Algoritma SVM, KNN Dan Random Forrest,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 6, no. 2, pp. 863–870, 2022, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti
M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES Journal of Mathematics, vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
R. R. S. Putri Kumala Sari, “Komparasi Algoritma Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Metaverse,” Jurnal MNEMONIC, vol. 7, no. 1, pp. 31–39, 2024, doi.org/10.36040/mnemonic.v7i2.
C. P. Yanti, N. W. Eva Agustini, N. L. W. Sri Rahayu Ginantra, and D. A. Putri Wulandari, “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” Jurnal Media Informatika Budidarma, vol. 7, no. 2, p. 756, 2023, doi: 10.30865/mib.v7i2.5900.
I. Septiana and D. Alita, “Perbandingan Random Forest dan SVM dalam Analisis Sentimen Quick Count Pemilu 2024,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 3, pp. 224–233, 2024, doi: 10.30591/jpit.v9i3.6640.
H. Ali, N. Hendrastuty, “Comparison Of Naïve Bayes Classifier, Support Vector Machine, Random Forest Algorithms For Public Sentiment Analysis Of Kip-K Program On Twitter,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 6, pp. 1701–1712, 2024, doi.org/10.52436/1.jutif.2024.5.6.4030.
P. Cahyani and L. Abdillah, “Perbandingan Performa Algoritma Naïve Bayes , SVM dan Random Forest : Studi Kasus Analisis Sentimen Pengguna Sosial Media X,” Jurnal Sains dan Teknologi, vol. 11, no. 02, pp. 12–21, 2024, doi.org/10.53008/kalbiscientia.v11i02.3624.
D. A. Fitri and Damayanti, “Komparasi algoritma random forest classifier dan support vector machine untuk sentimen masyarakat terhadap pinjaman online di media sosial,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2018–2029, 2024, doi.org/10.29100/jipi.v9i4.5608.
A. Baita, Y. Pristyanto, and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Information System Journal (INFOS), vol. 4, no. 2, pp. 42–42, 2021, doi.org/10.24076/infosjournal.2021v4i2.687.
D. S. Ningsih and R. R. Suryono, “Comparison of Naïve Bayes and Information Gain Algorithms in Cyberbullying Sentiment Analysis on Twitter Perbandingan Algoritma Naïve Bayes Dan Information Gain,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 4, pp. 1085–1091, 2024, doi.org/10.52436/1.jutif.2024.5.4.1908.
O. I. Gifari, Muh. Adha, F. Freddy, and F. F. S. Durrand, “Film Review Sentiment Analysis Using TF-IDF and Support Vector Machine,” Journal of Information Technology, vol. 2, no. 1, pp. 36–40, 2022, doi.org/10.46229/jifotech.v2i1.330.
Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.
J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, 2023, doi: 10.33365/jatika.v4i1.2468.
J. Anggraini and D. Alita, “Implementasi Metode SVM Pada Sentimen Analisis Terhadap Pemilihan Presiden (Pilpres) 2024 Di Twitter,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 2, pp. 102–111, 2024, doi: 10.30591/jpit.v9i2.6560.
Yulistiani and Styawati, “Analisis Sentimen Terhadap Calon Presiden Indonesia 2024 dengan Metode Extreme Gradient Boosting ( XGBOOST ),” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 3, pp. 322–328, 2024, doi: 10.30591/jpit.v9i3.6127.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal pengembangan IT, vol. 6, no. 3, pp. 150–155, 2021.
“Eskiyaturrofikoh” and R. R. ’Suryono, “Analisis Sentimen Aplikasi X Pada Google Play Store Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine (Svm),” JIPI(Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1408–1419, 2024, doi.org/10.29100/jipi.v9i3.
D. Kurniawan, M. Najib, and D. Satria, “Analisis Sentimen Opini Publik Tentang Gempa Megathrust di Indonesia Menggunakan Metode Support Vector Machine dan Naïve Bayes,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, 2024, doi: 10.47065/bits.v6i3.6213.
R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” Jurnal Manajemen Informatika (JAMIKA), vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.
Tommy Suhendra, B. Intan, and A. T. Martadinata, “Analisis Sentimen Pengguna Aplikasi Netflix Pada Ulasan Google Playstore Menggunakan Metode Naïve Bayes,” ESCAF 3rd, vol. 2, no. 2, pp. 1011–1022, 2024, doi: 10.47065/bits.v6i2.5528.
T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.
R. S. Arischo and D. Damayanti, “Analisis Sentimen Pinjaman Online di Twitter dengan Metode Naive Bayes Classifier dan SVM,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, p. 1120, 2024, doi: 10.30865/mib.v8i2.7406.
M. Azhari and Parjito, “Analisis Sentimen Opini Publik Program Makan Siang Gratis dengan Random Forest Pada Media X,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 1932–1942, 2024, doi: 10.47065/bits.v6i3.6423.
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” Jurnal Informatika Upgris, vol. 7, no. 1, pp. 36–40, 2021, doi: 10.26877/jiu.v7i1.7099.
A. D. Adhi Putra, “Sentiment Analysis on User Reviews of the Bibit and Bareksa Application with the KNN Algorithm,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi:10.35957/Jatisi.V8i2.962.
R. Aryanti, T. Misriati, and A. Sagiyanto, “Analisis Sentimen Aplikasi Primaku Menggunakan Algoritma Random Forest dan SMOTE untuk Mengatasi Ketidakseimbangan Data,” Journal of Computer System and Informatics (JoSYC), vol. 5, no. 1, pp. 218–227, 2023, doi: 10.47065/josyc.v5i1.4562.
R. Nurhidayat and N. Hendrastuty, “Analisis Sentimen Komentar Media Sosial Twitter Terhadap Tes CPNS dengan Algoritma Naive Bayes,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 1477–1489, 2024, doi: 10.47065/bits.v6i3.6148.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma SVM, Random Forest, KNN untuk Analisis Sentimen Terhadap Overclaim Skincare pada Media Sosial X
Pages: 2390-2402
Copyright (c) 2025 Ira Tri Rahmawati, Debby Alita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).