A Optimizing Word2Vec Dimensions for Sentiment Analysis of Photomath Reviews using Random Forest and SVM
Abstract
Technology in the Industrial Revolution 4.0 era supports modern learning through apps like Photomath, simplifying math problem-solving for users. However, diverse user reviews highlight the need for sentiment analysis to evaluate app quality. This research analyzes 9,059 reviews of Photomath collected from the Google Play Store using Python. Word2Vec is used in the study to compare Random Forest and Support Vector Machine (SVM) classifiers for feature extraction. To ensure clean and consistent data, preprocessing techniques such as stemming, tokenization, and stopword removal were used. Text with rich semantic aspects was mathematically represented using Word2Vec. The findings show that SVM using an RBF kernel performed better than Random Forest, with an F1-score of 88.5%, 88.5% accuracy, 88.7% precision, and 88.5% recall. Performance was effectively improved by combining 300-dimensional Word2Vec with stemming algorithms. While Random Forest achieved slightly lower accuracy, it shows promise for specific use cases. This study offers practical insights for improving Photomath by tailoring updates based on user sentiment. The findings emphasize the importance of preprocessing, dimensional optimization, and classifier selection in developing accurate sentiment analysis models. Limitations include the dataset size and the use of classical machine learning models. Future research could address these by exploring larger datasets or deep learning techniques to further improve performance.
Downloads
References
M. F. L. Sibuea, M. A. Sembiring, I. Almeina, and R. T. A. Agus, “Pemanfaatan Aplikasi Photomath Sebagai Media Belajar Matematika,” J. Pemberdaya. Sos. dan Teknol. Masy., vol. 2, no. 1, p. 109, 2022, doi: 10.54314/jpstm.v2i1.962.
I. N. M. Zain, M. A. B. Setambah, M. S. Othman, and M. H. M. Hanapi, “Use of Photomath Applications in Helping Improving Students’ Mathematical (Algebra) Achievement,” Eur. J. Educ. Pedagog., vol. 4, no. 2, pp. 85–87, 2023, doi: 10.24018/ejedu.2023.4.2.601.
A. Car et al., “Analisis Sentimen Review Pengguna Aplikasi Photomath Dengan Metode Support Vector Machine (SVM),” Int. J. Technol., vol. 47, no. 1, p. 100950, 2023.
V. D. I. S. Cilegon, “Penerapan pemanfaatan multimedia pada aplikasi photomath dalam pembelajaran trigonometri kelas xi mipa v di sman 3 cilegon,” pp. 289–296, 2023, doi: 10.57254/ijtl.v1i3.45.
F. Zahra and Y. Yahfizham, “Systematic Literature Review : Memanfaatkan Aplikasi Photomath Sebagai Media Belajar Untuk Meningkatkan Kemampuan Komputasi Siswa,” Bilangan J. Ilm. Mat. Kebumian dan Angkasa, vol. 2, no. 3, pp. 26–32, 2024, [Online]. Available: https://doi.org/10.62383/bilangan.v2i3.46
F. Syafira, “Analisis Sentimen Dampak Perkembangan Artificial Intelligence (AI) Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine Dan Lexicon Based,” Institutional Repos. UIN Syarif Hidayatullah Jakarta, p. 163, 2023.
I. F. Rozi, A. T. Firdausi, and K. Islamiyah, “Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naive Bayes Dengan Fitur N-Gram,” JIP (Jurnal Inform. Polinema), vol. 6, pp. 33–39, 2020, doi: https://doi.org/10.33795/jip.v6i2.316.
A. A. Firdaus et al., “Application of Sentiment Analysis as an Innovative Approach to Policy Making: A Review,” J. Robot. Control, vol. 5, no. 6, pp. 1784–1798, 2024, doi: 10.18196/jrc.v5i6.22573.
M. J. Aufa and A. Qoiriah, “Analisis Sentimen Pengguna Platform Belajar Online Coursera menggunakan Random Forest dengan Metode Ekstraksi Fitur Word2vec,” (Journal Informatics Comput. Sci. ISSN, vol. 04, pp. 244–255, 2022, doi: https://doi.org/10.26740/jinacs.v4n02.p244-255.
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.
S. N. Adhan et al., “Analisis sentimen ulasan aplikasi wattpad di google play store dengan metode random forest,” AnoaTIK J. Teknol. Inf. dan Komput. Vol. 2, No. 1, Juni 2024 e-ISSN, vol. 2, no. 1, pp. 6–15, 2024, doi: https://doi.org/10.33772/anoatik.v2i1.32.
R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.
M. A. A. Jihad, Adiwijaya, and W. Astuti, “Analisis Sentimen Terhadap Ulasan Film Menggunakan Word2Vec dan SVM,” e-Proceeding Eng., vol. 8, no. 4, pp. 4136–4144, 2021.
D. I. Rifai, “Implementasi Word2Vec Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Tiktok Menggunakan Metode Support Vector Machine,” 2024, [Online]. Available: http://repository.unissula.ac.id/id/eprint/34039
P. E. Shopee and S. Watmah, “Komparasi Metode K-NN , Support Vector Machine , Dan Random Forest,” Insa. – J. Inov. dan Sains Tek. Elektro, vol. 2, no. 1, pp. 15–21, 2021, doi: 10.31294/instk.v2i1.419.
E. Engineering, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine ( SVM ),” Jambura J. Electr. Electron. Eng., vol. 5, pp. 32–35, 2023, doi: https://doi.org/10.37905/jjeee.v5i1.16830.
B. W. Sari and F. F. Haranto, “Implementasi Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Telkom Dan Biznet,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 171–176, 2019, doi: 10.33480/pilar.v15i2.699.
D. Intan, S. F. Handayani, and R. W. Pratiwi, “Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen,” vol. 6, no. 3, pp. 156–161, 2021, doi: https://doi.org/10.30591/jpit.v6i3.3016.
P. Fremmuzar and A. Baita, “Uji Kernel SVM dalam Analisis Sentimen Terhadap Layanan Telkomsel di Media Sosial Twitter,” Komputika J. Sist. Komput., vol. 12, no. 2, pp. 57–66, 2023, doi: 10.34010/komputika.v12i2.9460.
N. G. Ramadhan and F. D. Adhinata, “Teknik Smote Dan Gini Score Dalam Klasifikasi Kanker Payudara,” RADIAL J. Perad. Sains, Rekayasa dan Teknol., vol. 9, no. 2, pp. 125–134, 2021, doi: 10.37971/radial.v9i2.229.
F. I. Rafif, M. D. Purbolaksono, and ..., “Sentiment Analysis using Random Forest and Word2Vec for Indonesian Language Movie Reviews,” J. Media …, vol. 7, pp. 1109–1116, 2023, doi: 10.30865/mib.v7i3.6299.
E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445
K. Rahmata, “Implementasi metode word2vec dan vector space model pada sistem temu kembali informasi pembelajaran sirah nabawiyah,” Repository.Uinjkt.Ac.Id, 2020, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/55997
M. M. Siregar, R. Hizria, and D. Pardede, “Perbandingan Kinerja Kernel SVM dalam Klasifikasi Kategori Kanker Kulit Menggunakan Transfer Learning,” vol. 4, no. 1, pp. 83–90, 2024, doi: https://doi.org/10.47709/dsi.v4i1.4665.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel A Optimizing Word2Vec Dimensions for Sentiment Analysis of Photomath Reviews using Random Forest and SVM
Pages: 2248-2260
Copyright (c) 2025 Diva Azty Varissa Azis, Yuliant Sibaroni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).