Analisis Sentimen Pada Ulasan Aplikasi Bank Syariah Indonesia Mobile Menggunakan Support Vector Machine dan Naïve Bayes
Abstract
The internet plays a crucial role in facilitating various human activities, including in the field of electronic banking services, which encompasses various financial services such as ATMs, internet banking, SMS banking, and mobile banking. All of these aim to enhance service quality with a focus on security, convenience, and effectiveness. BSI is one of the banks offering mobile banking services. Based on user reviews, the BSI Mobile app often experiences technical issues such as bugs and transaction failures. To assess the level of satisfaction with the app, the researcher uses sentiment analysis methods. This method also helps potential customers identify aspects that need improvement or development in the products and services to enhance their quality. The study employs Support Vector Machine (SVM) and Naïve Bayes algorithms. The test results show that the Naïve Bayes algorithm achieves an accuracy of 74.37%, recall of 74.37%, precision of 75.46%, and an F1-score of 74.5%. Meanwhile, the SVM algorithm achieves an accuracy of 77.39%, precision of 77.8%, recall of 77.39%, and an F1-score of 77.38%. These findings indicate that SVM performs better in sentiment classification tasks compared to Naïve Bayes. With its superior performance, SVM is the more suitable algorithm for analyzing user perceptions of the BSI Mobile app. Therefore, the findings of this study can contribute to the development of more innovative digital service strategies and enhance competitiveness in the digital era.
Downloads
References
I. Dewi Onantya and P. Pandu Adikara, “Analisis Sentimen Pada Ulasan Aplikasi BCA Mobile Menggunakan BM25 Dan Improved K-Nearest Neighbor”, vol.3, no. 3, hlm. 2575-2580, Maret 2019. [Online]. Available: http://j-ptiik.ub.ac.id
F. Gunawan, M. A. Fauzi, and P. P. Adikara, “Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile),” Syst. Inf. Syst. Inform. J., vol. 3, no. 2, pp. 1–6, Dec. 2017, doi: 10.29080/systemic.v3i2.234.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi Dan Penelit. Inform. JEPIN, vol. 4, no. 2, p. 113, Dec. 2018, doi: 10.26418/jp.v4i2.27526.
D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm,” J. Phys. Conf. Ser., vol. 1641, no. 1, p. 012043, Nov. 2020, doi: 10.1088/1742-6596/1641/1/012043.
L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online JD.ID Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, 2019.
M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 6308–6325, 2020, doi: 10.1109/JSTARS.2020.3026724.
N. Hayatin, G. I. Marthasari, and L. Nuraini, “Optimization of Sentiment Analysis for Indonesian Presidential Election using Naïve Bayes and Particle Swarm Optimization,” J. Online Inform., vol. 5, no. 1, pp. 81-88, June 2020, doi: 10.15575/join.v5i1.558.
N. Herlinawati et al., “Analisis Sentimen Zoom Cloud Meetings Di Play Store Menggunakan Naïve Bayes Dan Support Vector Machine,” vol. 5, No.2, Juli 2020, doi: https://doi.org/10.24114/cess.v5i2.18186.
R. Kusumawati, A. D’arofah, and P. A. Pramana, “Comparison Performance of Naive Bayes Classifier and Support Vector Machine Algorithm for Twitter’s Classification of Tokopedia Services,” J. Phys. Conf. Ser., vol. 1320, no. 1, p. 012016, Oct. 2019, doi: 10.1088/1742-6596/1320/1/012016.
S. Berliani and S. Lestari, “Analisis Sentimen Masyarakat Terhadap Isu Pecat Sri Mulyani Pada Twitter Menggunakan Metode Naive Bayes Dan Support Vector Machine,” J. Sains Dan Teknol., vol. 5, no. 3, pp. 951–960, Apr. 2024, doi: 10.55338/saintek.v5i3.2746.
S. Linawati, R. A. Safitri, A. R. Alfiyan, W. E. Pangesti, and M. N. Winnarto, “Perbandingan Algoritma Klasifikasi Naive Bayes Dan Svm Pada Studi Kasus Pemberian Penerima Beasiswa PPA,” Swabumi, vol. 8, no. 1, pp. 71–75, Mar. 2020, doi: 10.31294/swabumi.v8i1.7708.
S. Pandya and P. Mehta, “A Review On Sentiment Analysis Methodologies, Practices And Applications,” Int. J. Sci. Technol. Res., vol. 9, pp. 601-609, 2020.
M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentiment analysis: Approaches, challenges and trends,” Knowl.-Based Syst., vol. 226, p. 107134, Aug. 2021, doi: 10.1016/j.knosys.2021.107134.
P. Nandwani and R. Verma, “A review on sentiment analysis and emotion detection from text,” Soc. Netw. Anal. Min., vol. 11, no. 1, p. 81, Dec. 2021, doi: 10.1007/s13278-021-00776-6.
A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, Dec. 2021, doi: 10.31294/reputasi.v2i2.785.
R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” Elkom J. Elektron. Dan Komput., vol. 15, no. 2, pp. 456–464, Dec. 2022, doi: 10.51903/elkom.v15i2.918.
M. A. S. Putra, I. Permana, M. Mustakim, and M. Afdal, “Analisis Sentimen Masyarakat Mengenai Gerakan Childfree di Media Sosial X Menggunakan Algoritma NBC dan SVM: Sentiment Analysis of Childfree Campaign on X Social Media Using NBC and SVM Algorithms,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1189–1198, Jul. 2024, doi: 10.57152/malcom.v4i4.1356.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, Aug. 2019, doi: 10.52985/insyst.v1i1.36.
O. I. Gifari, Muh. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, Mar. 2022, doi: 10.46229/jifotech.v2i1.330.
M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” J. Inform. Telecommun. Eng., vol. 4, no. 2, pp. 373–382, Jan. 2021, doi: 10.31289/jite.v4i2.4524.
U. Amelia, J. Indra, and A. F. N. Masruriyah, “Implementasi Algoritma Support Vector Machine (Svm) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,”, vol. 3, no. 2, pp. 254-259, Juli 2022.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. Dan Sist. Inf., vol. 2, no. 1, p. 31, Feb. 2021, doi: 10.33365/jdmsi.v2i1.1021.
S. Samsir, A. Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 1, p. 157, Jan. 2021, doi: 10.30865/mib.v5i1.2580.
M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “Penerapan Metode Naïve Bayes Classifier dan Lexicon Based Untuk Analisis Sentimen Cyberbullying Pada Bpjs,” JATI J. Mhs. Tek. Inform., vol. 6, no. 2, pp. 725–733, Oct. 2022, doi: 10.36040/jati.v6i2.5633.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pada Ulasan Aplikasi Bank Syariah Indonesia Mobile Menggunakan Support Vector Machine dan Naïve Bayes
Pages: 2230-2238
Copyright (c) 2025 Nabila Fadia Aqilla, Muhammad Jazman, Syaifullah Syaifullah, Medyantiwi Rahmawita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).