Analisis Loyalitas Pelanggan Berdasarkan Model LRFM Menggunakan Metode K-Means
Abstract
In the era of intense competition in the beauty industry, it is important for companies to understand customer behavior and identify loyal customer segments. Ths study aims to analyze customer loyalty at the Lanona Skincare Beauty clinic using the LRFM (Length, Recency, Frequency, Monetary) model with the K-Means Clustering method. Beauty clinics have not implemented CRM as part of theur business strategy. There is ineffective marketing strategies. Customer transaction data from April to October 2023 was collected and analyzed to determine customer value based on LRFM parameters. The analysis results show that K-Means is effetive in grouping cutomers until the best three clusters are obtained. Cluster 1 with a results of 0,620 is the most loyal customers, cluster 2 with a results of 0,100 is grouped into new inactive customers and cluster 3 with a results of 0,353 is high frequency customers but low revenue contribution. The proposed marketing strategies for each cluster include rewarding an improving communication to maintain customers loyalty. This research provides valuable insights for Lanona Skincare Beauty Clinic in creating a more focused and succesfull marketing plan to increase customer happiness and loyalty.
Downloads
References
A. D. Savitri, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus : Belle Crown Malang)”, vol. 2, no. 9, hlm. 2957-2966, Feb 2018.
A. Y. Eskaluspita and I. D. Sumitra, “The Open Group Architecture Framework for Designing the Enterprise Architecture of ALIT,” IOP Conf. Ser. Mater. Sci. Eng., vol. 879, no. 1, p. 012083, Jul. 2020, doi: 10.1088/1757-899X/879/1/012083.
R. Rahmadianti, A. Dhini, and E. Laoh, “Estimating Customer Lifetime Value using LRFM Model in Pharmaceutical and Medical Device Distribution Company,” in 2020 International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia: IEEE, Nov. 2020, pp. 1–5. doi: 10.1109/ICISS50791.2020.9307592.
J.-T. Wei, S.-Y. Lin, C.-C. Weng, and H.-H. Wu, “A case study of applying LRFM model in market segmentation of a children’s dental clinic,” Expert Syst. Appl., vol. 39, no. 5, pp. 5529–5533, Apr. 2012, doi: 10.1016/j.eswa.2011.11.066.
D. P. Hidayatullah, R. I. Rokhmawati, and A. Reza, “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada Maninjau Center Kota Malang)”, j-ptiik, vol. 2, no. 8, hlm. 2406-2415, Sept 2018.
H.-H. Wu, S.-Y. Lin, and C.-W. Liu, “Analyzing Patients’ Values by Applying Cluster Analysis and LRFM Model in a Pediatric Dental Clinic in Taiwan,” Sci. World J., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/685495.
M. T. Dharmawan, N. Y. Setiawan, and F. A. Bachtiar, “Segmentasi Pelanggan Menggunakan Metode Fuzzy C-Means Clustering Berdasarkan LRFM Model Pada Toko Sepatu” , vol. 3, no. 2, hlm. 1978-1985, Des 2018.
S. Monalisa, J. S. Informasi, U. Islam, N. Sultan, S. Kasim, and D. Index, “Klasterisasi Customer Lifetime Value Dengan Model Lrfm Menggunakan Algoritma K-Means", vol. 5, no. 2, Mei 2018, pp. 247–252, 2018, doi: 10.25126/jtiik.201852690.
A. J. M. Usmadi, Y. Handoko, and F. P. Sarjana, “Perancangan Customer Relationship Management Untuk Membangun Loyalitas Pelanggan Pada Divisi Pemasaran Pt Bio Farma (Persero)” vol. 3, no. 1, Agustus. 2017, doi.org/10.34010/jtk3ti.v2i2.308.
D. K. Gultom, M. Arif, and M. Fahmi, “Determinasi Kepuasan Pelanggan Terhadap Loyalitas Pelanggan Melalui Kepercayaan,” vol. 3, no. 2, Sept 2020, doi: 10.30596/maneggio.v3i2.5290.
Sambodo Rio Sasongko, “Faktor-Faktor Kepuasan Pelanggan Dan Loyalitas Pelanggan (Literature Review Manajemen Pemasaran),” J. Ilmu Manaj. Terap., Vol. 3, No. 1, Pp. 104–114, Oct. 2021, Doi: 10.31933/Jimt.V3i1.707.
A. Syaifudin, P. Purwanto, H. Himawan, and M. A. Soeleman, “Customer Segmentation with RFM Model using Fuzzy C-Means and Genetic Programming,” MATRIK J. Manaj. Tek. Inform. Dan Rekayasa Komput., vol. 22, no. 2, pp. 239–248, Mar. 2023, doi: 10.30812/matrik.v22i2.2408.
E. Ditendra, S. Monalisa, S. Anderjovi, and S. Lesmana, “Klasterisasi Clv Dengan Model Lrfm Menggunakan Algoritma Fuzzy C-Means (Studi Kasus: Pangeran Gym Pekanbaru),” J. Ilm. Rekayasa Dan Manaj. Sist. Inf., vol. 6, no. 1, p. 109, 2020, doi: 10.24014/rmsi.v6i1.8535.
Ni Putu Viona Viandari, I Made Agus Dwi Suarjaya, and I Nyoman Piarsa, “Pemetaan Pelanggan dengan LRFM dan Two Stage Clustering untuk Memenuhi Strategi Pengelolaan,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 6, no. 1, pp. 130–139, 2022, doi: 10.29207/resti.v6i1.3778.
I. A. Fauzi and R. D. Dana, “Implementasi Data Mining Clustering Dalam Mengelompokan Kasus Perceraian Yang Terjadi Di Provinsi Jawa Barat Menggunakan Algoritma K-Means”, Maeswara, vol. 1, no. 4, pp. 58-72, Jul. 2023, doi:10.61132/maeswara.v1i4.64.
G. Arseta and H. D. Purnomo, “Analisa Segmentasi Customer Pada Perusahaan Bisnis Properties Menggunakan Model RFM (Kasus PT. Pollux Aditama Kencana),” vol. 7, no. 2, pp. 639-649, Sept 2023.
N. Dwitri, J. A. Tampubolon, S. Prayoga, F. I. R.H Zer, and D. Hartama, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia,” J. Teknol. Inf., vol. 4, no. 1, pp. 128–132, Jun. 2020, doi: 10.36294/jurti.v4i1.1266.
S. Monalisa, “Klusterisasi Customer Lifetime Value dengan Model LRFM menggunakan Algoritma K-Means,” J. Teknol. Inf. Dan Ilmu Komput., vol. 5, no. 2, pp. 247–252, May 2018, doi: 10.25126/jtiik.201852690.
D. A. Tarigan, “Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification”, vol. 4, no. 1, Aug 2023, hal. 545-552, doi 10.30865/kik.v4i1.964.
U. Dian Puspita and ainul M. Huda, “Segmentasi Customer Lifetime Value Pada Model Lrfm Menggunakan Metode K-Means Euclidean Distance,” Bul. Ilm. Math Stat Dan Ter. Bimaster, vol. 12, no. 5, pp. 415–424, 2023.
Rahal, “Application of the Analytical Hierarchy Process (AHP) Method in Determining the Best Employees,” Br. Int. Humanit. Soc. Sci. BIoHS J., vol. 4, no. 2, pp. 302–315, 2022, doi: 10.33258/biohs.v4i2.669.
T. A. Afifah, R. Novita, T. K. Ahsyar, and Z. Zarnelly, “Penerapan Algoritma K-Means Menggunakan Model LRFM Dalam Klasterisasi Nilai Hidup Pelanggan,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 1010, Apr. 2024, doi: 10.30865/mib.v8i2.7605.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Loyalitas Pelanggan Berdasarkan Model LRFM Menggunakan Metode K-Means
Pages: 2239-2247
Copyright (c) 2025 Runi Aulia Putri, Muhammad Jazman, Syaifullah Syaifullah, Medyantiwi Rahmawita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).