Perbandingan Algoritma NBC Dan SVM Untuk Melakukan Analisis Sentimen Terhadap PP NO.82 Tahun 2021


  • Arum Mustika Rani Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • Nirwana Hendrastuty * Mail Universitas Teknokrat Indonesia, Bandar Lampung, Indonesia
  • (*) Corresponding Author
Keywords: Sentiment Analysis; Naïve Bayes; SVM; Public Perception; Government Regulation No.82 of 2021

Abstract

Government Regulation (PP) No. 82/2021, which regulates the payment of pensions and allowances for Constitutional and Supreme Court Justices, has sparked public debate, especially after allegations of significant cuts to the Supreme Court's budget. This issue raises concerns regarding policy transparency, making it important to analyze public sentiment towards this PP. This study uses two sentiment analysis methods, namely Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM), to evaluate public opinion based on data from Twitter. The dataset consists of 2,719 tweets that have gone through preprocessing stages, such as cleansing, stemming, and using SMOTE techniques, with 70% data division for training and 30% for model testing. This study tests the performance of NBC and SVM through four scenarios: (1) without stemming and without SMOTE, (2) without stemming with SMOTE, (3) with stemming without SMOTE, and (4) with stemming and SMOTE. The results show that SVM has a more stable performance than NBC in all scenarios. In the scenario without stemming and without SMOTE, both models recorded 100% accuracy, but NBC failed to detect positive sentiment accurately. When SMOTE was applied without stemming, NBC's accuracy decreased to 97%, while SVM still achieved a perfect accuracy of 100%. In the scenario with stemming without SMOTE, NBC recorded 97% accuracy, while SVM reached 99%. With the application of SMOTE and stemming, NBC accuracy decreased to 95%, while SVM again recorded a perfect accuracy of 100%. This study concludes that SVM is the best method for sentiment analysis of PP No. 82 of 2021, especially in scenarios with stemming and SMOTE, providing important insights into public opinion and confirming the superiority of SVM in sentiment classification related to public policy.

Downloads

Download data is not yet available.

References

J. Widodo, “PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 82 TAHUN 2O21.” [Online]. Available: https://peraturan.bpk.go.id/Details/175150/pp-no-82-tahun-2021

R. R. C. Putra, E. B. Perkasa, T. Sugihartono, A. P. Alkayess, I. D. Sandro, and R. Indallah, “Komparasi Naive Bayess dengan Support Vector Machine dalam Analisis Sentimen Aplikasi MyPertamina,” SATIN-Sains dan Teknologi Informasi, vol. 9, no. 2, pp. 90–99, 2023, doi: https://doi.org/10.33372/stn.v9i2.1042.

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 5, no. 1, pp. 303–312, 2024, doi: https://doi.org/10.30645/kesatria.v5i1.339.

S. Styawati, A. R. Isnain, N. Hendrastuty, and L. Andraini, “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 1, pp. 56–60, 2021, doi: https://doi.org/10.30591/jpit.v6i1.3245.

G. G. Warow and H. Pandia, “Analisis Sentimen Aplikasi Dana Menggunakan Naïve Bayes Classifier dan Support Vector Machine,” Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 1, pp. 609–621, 2024, doi: 10.35889/jutisi.v13i1.1893.

A. Ndruru, “Analisis Sentimen UU Cipta Kerja Melalui Omnibus Law Menggunakan Naive Bayes Classifier (NBC) Dan Support Vector Machine (SVM),” Pelita Informatika: Informasi dan Informatika, vol. 10, no. 3, pp. 85–90, 2022, doi: https://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/3768/2495.

D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” The Indonesian Journal of Computer Science, vol. 12, no. 4, 2023, doi: https://doi.org/10.33022/ijcs.v12i4.3341.

Y. Khoiruddin, A. Fauzi, and A. M. Siregar, “Analisis Sentimen Gojek Indonesia Pada Twitter Menggunakan Algoritme Naïve Bayes Dan Support Vector Machine,” Progresif: Jurnal Ilmiah Komputer, vol. 19, no. 1, pp. 391–400, 2023, doi: 10.35889/progresif.v19i1.1173.

K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technologia: Jurnal Ilmiah, vol. 14, no. 3, pp. 227–232, 2023, doi: http://eprints.ummi.ac.id/id/eprint/3348.

T. D. Dikiyanti, A. M. Rukmi, and M. I. Irawan, “Sentiment analysis and topic modeling of BPJS Kesehatan based on twitter crawling data using Indonesian Sentiment Lexicon and Latent Dirichlet Allocation algorithm,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 12054. doi: 10.1088/1742-6596/1821/1/012054.

I. G. S. M. Diyasa, N. M. I. M. Mandenni, M. I. Fachrurrozi, S. I. Pradika, K. R. N. Manab, and N. R. Sasmita, “Twitter sentiment analysis as an evaluation and service base on python textblob,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12034. doi: 10.1088/1757-899X/1125/1/012034.

Y. Ikhsani, I. Permana, F. N. Salisah, and N. E. Rozanda, “Perbandingan Algoritma Support Vector Machine dan Naïve Bayes dalam Menganalisis Sentimen Pinjaman Online di Twitter,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 0–13, 2024, doi: 10.47065/bits.v6i3.6106.

R. Nurhidayat and N. Hendrastuty, “Analisis Sentimen Komentar Media Sosial Twitter Terhadap Tes CPNS dengan Algoritma Naive Bayes,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, pp. 1477–1489, 2024, doi: 10.47065/bits.v6i3.6148.

I. H. Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 302–307, 2023, doi: https://doi.org/10.30591/jpit.v8i3.5734.

R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin Covid-19 Di Twitter,” Elkom: Jurnal Elektronika dan Komputer, vol. 15, no. 2, pp. 456–464, 2022, doi: https://doi.org/10.51903/elkom.v15i2.918.

S. N. Nugraha, R. Pebrianto, A. Latif, and M. R. Firdaus, “Analisis Sentimen Twitter Terhadap Menteri Indonesia Dengan Algoritma Support Vector Machine Dan Naive Bayes,” E-Link: Jurnal Teknik Elektro dan Informatika, vol. 17, no. 1, pp. 1–12, 2022, doi: http://dx.doi.org/10.30587/e-link.v17i1.3965.

M. Manipi, R. Soekarta, M. Yusuf, and F. Tella, “Analisis Sentimen Tentang Undang-Undang Perlindungan Data Pribadi Menggunakan Algoritma Naive Bayes Classifier,” Framework: Jurnal Ilmu Komputer dan Informatika, vol. 2, no. 01, pp. 93–100, 2023, doi: https://doi.org/10.33506/jiki.v2i01.3099.

H. Sulastomo, R. Ramadiansyah, K. Gibran, E. Maryansyah, and A. Tegar, “Analisis Sentimen Pada Twitter@ Ovo_Id dengan Metode Support Vectore Machine (SVM),” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 6, no. 2, pp. 1050–1056, 2022, doi: http://dx.doi.org/10.30645/j-sakti.v6i2.514.

M. N. Rahman, “Analisis performa penggunaan stopwords dan stemming dalam sentimen analisis dengan pendekatan klasifikasi naive bayes.” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, 2022. doi: https://repository.uinjkt.ac.id/dspace/handle/123456789/65210.

L. Rofiqi and M. Akbar, “Analisis Sentimen Terkait RUU Perampasan Aset dengan Support Vector Machine,” JEKIN-Jurnal Teknik Informatika, vol. 4, no. 3, pp. 529–538, 2024, doi: https://doi.org/10.58794/jekin.v4i3.824.

G. Gumelar, Q. Ain, R. Marsuciati, S. A. Bambang, A. Sunyoto, and M. S. Mustafa, “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” Prosiding SISFOTEK, vol. 5, no. 1, pp. 250–255, 2021, doi: https://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/295/262.

A. N. Indraini, I. Ernawati, and A. Zaidah, “Analisis Sentimen Terhadap Pembelajaran Daring Di Indonesia Menggunakan Support Vector Machine (SVM),” Jurnal Ilmiah FIFO, vol. 68, 2022, doi: http://dx.doi.org/10.22441/fifo.2022.v14i1.007.

D. N. Novianti, D. F. Shiddieq, F. F. Roji, and W. Susilawati, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Metaverse: Comparison of Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis of the Metaverse,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 231–239, 2024, doi: https://doi.org/10.57152/malcom.v4i1.1061.

H. Hariyadi, D. Firdo, and M. H. Al Rafi, “Implementasi Algoritma Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Ulasan Aplikasi Canva,” Jurnal Minfo Polgan, vol. 13, no. 1, pp. 261–269, 2024, doi: 10.33395/jmp.v13i1.13568.

R. Noviana and I. Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” Jurnal Teknik dan Science, vol. 2, no. 2, pp. 51–60, 2023, doi: https://doi.org/10.56127/jts.v2i2.791.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Perbandingan Algoritma NBC Dan SVM Untuk Melakukan Analisis Sentimen Terhadap PP NO.82 Tahun 2021

Dimensions Badge
Article History
Submitted: 2024-12-21
Published: 2025-02-27
Abstract View: 32 times
PDF Download: 31 times
How to Cite
Rani, A., & Hendrastuty, N. (2025). Perbandingan Algoritma NBC Dan SVM Untuk Melakukan Analisis Sentimen Terhadap PP NO.82 Tahun 2021. Building of Informatics, Technology and Science (BITS), 6(4), 2139-2151. https://doi.org/10.47065/bits.v6i4.6496
Issue
Section
Articles