Perbandingan Algoritma Naïve Bayes dan LSTM untuk Analisis Sentimen Terhadap Opini Masyarakat Tentang Sandwich Generation
Abstract
Sandwich Generation is a term for a group of people who have elderly parents and children, so they have to take care of both generations. Opinions about this phenomenon have elicited various responses on social media twitter, which requires in-depth analysis. This study identifies the problems of the lack of research comparing the performance of Naïve Bayes and LSTM algorithms in analyzing public opinion sentiment about the sandwich generation, the complexity of social media data analysis with the characteristics of informal language, abbreviations, and symbols that are difficult to analyze manually, the need to explore the algorithm's ability to classify sentiment, and determine the most accurate method to analyze public opinion sentiment. Sentiment analysis is used to evaluate opinions, feedback, and emotions by classifying texts into positive, negative, or neutral categories. The results obtained from this study are that the LSTM method has better performance when compared to Naive Bayes. The LSTM method produced an accuracy, precision and recall value of 91.85%. while the Naive Bayes method has an accuracy value of 83%, precision of 90% and recall of 82%.
Downloads
References
Badan Pusat Statistik. Hasil sensus penduduk 2020. Diakses pada 25 November, 2024, melalui https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html
Kristi, A. M. (2022, Januari 3). 5 hal menarik tentang sandwich generation, kamu termasuk. IDN Times. Diakses pada 25 November, 2024, melalui https://www.idntimes.com/life/inspiration/agata-melinda-kristi/5-hal-menarik-tentang-sandwich-generation-kamu-termasuk-c1c2?page=all
Diller, V. (2012, Oktober 3). The ‘over-stuffed’ sandwich generation. Psychology Today. Diakses pada 25 November, 2024, melalui https://www.psychologytoday.com/intl/blog/face-it/201210/the-over-stuffed-sandwich-generation
Cambridge Dictionary. Sandwich generation. Dalam Cambridge Dictionary. Diakses pada 25 November, 2024, melalui https://dictionary.cambridge.org/dictionary/english/sandwich-generation
Y. Rafita, “Social Network Analysis Dalam Melihat Kecenderungan Pemberitaan Pada Akun Twitter ‘@detikcom’ dan ‘@Metro_TV,’” Khazanah, vol. 6, no. 2, pp. 67–81, 2014, doi: 10.20885/khazanah.vol6.iss2.art7.
G. Sanjaya and K. M. Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” vol. 7, no. 3, pp. 9698–9710, 2020
L. Ardiani and H. Sujaini, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak Implementation of Sentiment Analysis of Community Responses to Development in Pontianak City,” vol. 8, no. 2, pp. 183–190, 2020, doi: 10.26418/justin.v8i2.36776.
B. Gunawan, H.S. Pratiwi and E.S. Pratama, " Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes", Jurnal Edukasi dan Penelitian Informatika, Vol. 4 No. 2, Desember 2018.
U. Rofiqoh, R.S. Perdana, and M.A. Fauzi, " Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features", Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 1, No. 12, Desember 2017, hlm. 1725-1732.
N. Fitriyah, B. Warsito, and D.A.I. Maruddani, "Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM)", JURNAL GAUSSIAN, Volume 9, Nomor 3, Tahun 2020, Halaman 376 -390.
I. Taufik, and S.A. Pamungkas, "Analisis Sentimen Terhadap Tokoh Publik Menggunakan Algoritma Support Vector Machine (SVM)", Jurnal “LOG!K@” , Jilid 8, No. 1, 2018, Hal. 69 - 79.
D.G. Nugroho, Y.H. Chrisnanto, and A. Wahana, "Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naïve Bayes", Prosiding SNST ke-7 Tahun 2016, Fakultas Teknik Universitas Wahid Hasyim Semarang.
F. Ratnawati, "Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter", Jurnal Inovtek Polbeng - Seri Informatika, Vol. 3, No. 1 , Juni 2018.
J. Nurvania, Jondri, and K.M. Lhaksamana, "Analisis Sentimen Pada Ulasan di TripAdvisor Menggunakan Metode Long Short Term Memory (LSTM)", e-Proceeding of Engineering : Vol.8, No.4 Agustus 2021.
C.K. Poetra, S.F. Pane, and Rd. N.S. Fatonah, "Meningkatkan Akurasi Long-Short Term Memory (LSTM) Pada Analisis Sentimen Vaksin Covid-19 di Twitter dengan Glove", Jurnal Telamtika, Vol. 16 No. 2, Institut Teknologi Harapan Bangsa Bandung, 2021.
M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, p. 209, 2019, doi: 10.22146/ijccs.41236.
H. Apriyani and Kurniati, "Perbandingan Metode Naïve Bayes dan Support Vector Machine dalam Klasifikasi Penyakit Diabetes Melitu", Jour. of Inf. Tech. Ampera, Vol. 1, No. , December 2020.
R.N. Devita, H.W. Herwanto and A.P. Wibawa, "Perbandingan Kinerja Metode Naïve Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa Indonesia", J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, Vol. 5, No. 4, September 2018.
Elisabeth, " Perbandingan Sentimen Analisis Terhadap Brand Indomie Menggunakan Naive Bayes dan Long Short Term Memory (LSTM)", Program Studi Sistem Informasi, Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara, 2018.
A. Savirani and N. Kurnia, “BIG DATA UNTUK ILMU SOSIAL ANTARA METODE RISET DAN REALITAS SOSIAL,” in Social Science / General, Social Science / Sociology / General, UGM PRESS, 2021, pp. 11–26. [Online]. Available: https://www.google.co.id/books/edition/BIG_DA TA_UNTUK_ILMU_SOSIAL/yHxJEAAAQBAJ ?hl=en&gbpv=1&dq=analisi+sentimen&pg=PA2 13&printsec=frontcover.
N. Petty Wahyuningtyas, D. Eka Ratnawati, and N. Yudi Setiawan, “Root Cause Analysis (RCA) berbasis Sentimen menggunakan Metode K-Nearest Neighbor (K-NN) (Studi Kasus: Pengunjung Kolam Renang Brawijaya),” 2023. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id.
Vaswani, A. et al. (2017) ‘Attention Is All You Need’. Available at: http://arxiv.org/abs/1706.03762.
Pradika, S. ilham, Nugroho, B., & Puspaningrum, E. Y. (2020). Pengenalan Tulisan Tangan Huruf Hijaiyah Menggunakan Metode Convolutional neural network. Seminar Nasional Informatika Bela Negara (SANTIKA), 1.
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Klasifikasi Penerima Bantuan Sosial Menggunakan Algoritma C 4.5,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
R. Feldman and J. Sanger, "The Text Mining Handbook". Cambridge, 2007.
A. Khumaidi, R. Raafi'udin and I.P. Solihin, "Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung", Jurn. Telematika, vol. 15, No. 1, Institut Teknologi Harapan Bangsa, 2020.
L. Zaman, S. Sumpeno, and M. Hariadi, “Analisis Kinerja LSTM dan GRU sebagai Model Generatif untuk Tari Remo,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 2, p. 142, 2019, doi: 10.22146/jnteti.v8i2.503.
S. Arafah and Fathoni, “Sentiment Analysis Pada Masyarakat Terhadap LRT Kota Palembang Menggunakan Metode Improved K-Nearest Neighbor”, Jurnal Media Informatika Budidarma, vol. 6, no. 3, pp. 1554-1561, July 2022.
I. Mawanta, T. S. Gunawan and Wanayumini, “Uji Kemiripan Kalimat Judul Tugas Akhir dengan Metode Cosine Similarity dan Pembobotan TF-IDF”, Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 726-738, April 2021.
[19] I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.
[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, & W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002
M. H. Azhar, P. P. Adikara, and Y. A. Sari, “Analisis Sentimen pada Ulasan Hotel dengan Fitur Score Representation dan Identifikasi Aspek pada Ulasan Menggunakan K-Modes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2777–2782, 2018.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Algoritma Naïve Bayes dan LSTM untuk Analisis Sentimen Terhadap Opini Masyarakat Tentang Sandwich Generation
Pages: 1677-1687
Copyright (c) 2024 Naufal Rizqi Ramadhan, Nirwana Hendrastuty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).