Analisis Sentimen Komentar Media Sosial Twitter Terhadap Tes CPNS dengan Algoritma Naive Bayes
Abstract
The Calon Pegawai Negeri Sipil (CPNS) is one of the most sought-after careers in Indonesia, with the number of applicants increasing every year. The CPNS selection process attracts public attention and triggers various opinions, both positive and negative, which are widely conveyed through social media such as Twitter. This research aims to analyze public sentiment towards the CPNS selection process using the Naive Bayes algorithm. The data used in this study consists of 5,599 comments on Twitter, with a composition of 5,269 negative sentiment data and 323 positive sentiment data. Tests were conducted using several data sharing ratios, namely 80:20, 70:30, 90:10, and 50:50. The results show that the 70:30 ratio provides the best accuracy, which is 95%. However, data imbalance causes the model to focus more on negative sentiment. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) was applied, which successfully improved the model's performance in classifying positive data, with precision and recall reaching 85-98%. After the application of SMOTE, the overall accuracy decreased slightly to 91% at 80:20, 70:30, and 90:10 ratios, but the model became more effective in detecting both sentiments. The results of this study provide insight into the public's views on CPNS selection and can be used by the government to improve the selection process in the future. With this approach, it is expected that government agencies can better understand public perceptions and optimize a more transparent and fair recruitment system.
Downloads
References
R. T. Silangen dan M. Y. Matdoan, “Klasifikasi Hasil Seleksi Kompotensi Dasar CPNS Menggunakan Metode Decision Tree,” Inferensi, vol. 5, no. 2, hal. 69, 2022, doi: 10.12962/j27213862.v5i2.12353.
Y. H. Yudha, R. F. Marta, dan H. Panggabean, “Diskursus Faking pada Seleksi CPNS pada Video Testimoni Mengerjakan Tes Karakteristik Pribadi,” J. Komun., vol. 13, no. 1, hal. 118–132, 2021, [Daring]. Tersedia pada: https://journal.untar.ac.id/index.php/komunikasi
E. Salim dan A. Solichin, “Analisis Sentimen Pada Media Sosial Twitter Terhadap Pelayanan Dinas Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes,” IDEALIS Indones. J. Inf. Syst., vol. 5, no. 2, hal. 79–86, 2022, doi: 10.36080/idealis.v5i2.2961.
I. A. Oktariansyah, F. R. Umbara, dan F. Kasyidi, “Klasifikasi Sentimen Untuk Mengetahui Kecenderungan Politik Pengguna X Pada Calon Presiden Indonesia 2024 Menggunakan Metode IndoBert,” Build. Informatics, Technol. Sci., vol. 6, no. 2, hal. 636–648, 2024, [Daring]. Tersedia pada: https://ejurnal.seminar-id.com/index.php/bits/article/view/5435
D. S. Ningsih dan R. R. Suryono, “Comparison of Naïve Bayes and Information Gain Algorithms in Cyberbullying Sentiment Analysis on Twitter Perbandingan Algoritma Naïve Bayes Dan Information Gain,” vol. 5, no. 4, hal. 1085–1091, 2024.
J. M. Br Sembiring dan H. H, “Naïve Bayes Algorithm Classification in Sentiment Analysis Covid-19 Wikipedia,” J. Tek. Inform., vol. 3, no. 4, hal. 869–875, 2022, doi: 10.20884/1.jutif.2022.3.4.311.
R. I. Lutfi, B. S. Rintyarna, dan W. Suharso, “Mapping Opini Publik Terhadap Calon PNS Yang Mundur Setelah Lolos Dengan Teknik Berbasis Multinomial Naive Bayes,” J. Smart Teknol., vol. 5, no. 1, hal. 127–135, 2023.
W. Astuti, E. Firasari, F. Lia Dwi Cahyanti, dan F. Sarasati, “Analysis Sentiment on the Acceptance of Cpns 2021 on Twitter Social Media Using Textblob,” J. Comput. Inf. Technol. As an Accredit. J. Rank, vol. 19, no. 1, hal. 15–21, 2022, [Daring]. Tersedia pada: https://doi.org/10.33480/techno.v19i1.2980
A. Jaya, “Analisis Sentimen Pandangan Public Profesi PNS (Pegawai Negeri Sipil) dari Twiter menerapkan indonesian Roberta Base Sentiment Classifier,” Indones. J. Data Sci., vol. 4, no. 1, hal. 38–44, 2023, doi: 10.56705/ijodas.v4i1.66.
Fitriani Fitriani, Ema Utami, dan Anggit Dwi Hartanto, “Analisis Sentimen Masyarakat Terhadap Pelaksanaan P3K Guru Dengan Algoritma Naive Bayes Dan Decision Tree,” Tek. Teknol. Inf. dan Multimed., vol. 3, no. 1, hal. 23–30, 2022, doi: 10.46764/teknimedia.v3i1.53.
Harman Akbar Tullah et al., “Sentiment Analysis Of Indonesian Civil Servan Candidates 2023 Twitter Network With Naive Bayes Algorithm Method,” Inspir. J. Teknol. Inf. dan Komun., vol. 13, no. 2, hal. 49–63, 2023, doi: 10.35585/inspir.v13i2.66.
F. N. Hidayat dan S. Sugiyono, “Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 2, hal. 665–672, 2023, doi: 10.55338/saintek.v5i2.1359.
R. Indrayana dan M. Solikhin, “Analisis Sentimen Pada Media Sosial Twitter Terhadap Pelayanan Dinas Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes,” Seminar Nasional Pendidikanipa Danmatematika, vol. 12, no. 1. hal. 79–86, 2020.
D. F. Sebastian, H. Sulistiani, dan A. R. Isnain, “Sentiment Analysis of Public Opinion on the Right of Inquiry in Indonesia in 2024 Using the Support Vector Machine ( Svm ) Method Analisis Sentimen Opini Masyarakat Mengenai Hak Angket Di Indonesia Tahun 2024 Menggunakan Metode Support Vector Machine ( Sv,” vol. 5, no. 4, hal. 1025–1034, 2024.
S. Surya Prabu Al Amin, J. Haerul Jaman, dan G. Garno, “Analisis Sentimen Masyarakat Terhadap Penanganan Kasus Penembakan Brigadir J Dengan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, hal. 2519–2526, 2024, doi: 10.36040/jati.v7i4.7126.
P. Elisa dan A. Rahman Isnain, “Comparison of Random Forest, Support Vector Machine and Naive Bayes Algorithms To Analyze Sentiment Towards Mental Health Stigma,” J. Tek. Inform., vol. 5, no. 1, hal. 321–329, 2024, [Daring]. Tersedia pada: https://doi.org/10.52436/1.jutif.2024.5.1.1817
R. Sanjaya, E. Tohidi, E. Wahyudi, dan K. Kaslani, “Analisis Sentimen Terhadap Berhentinya Tiktokshop Pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, hal. 507–514, 2024, doi: 10.36040/jati.v8i1.8443.
F. S. Mufidah, S. Winarno, F. Alzami, E. D. Udayanti, dan R. R. Sani, “Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier,” JOINS (Journal Inf. Syst., vol. 7, no. 1, hal. 14–25, 2022, doi: 10.33633/joins.v7i1.5883.
S. Alam, M. G. Resmi, dan N. Masripah, “Classification of Covid-19 vaccine data screening with Naive Bayes algorithm using Knowledge Discovery in database method,” J. Comput. Networks, Archit. High Perform. Comput., vol. 4, no. 2, hal. 177–185, 2022, doi: 10.47709/cnahpc.v4i2.1584.
T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 5, hal. 178–185, 2022, doi: 10.30865/klik.v2i5.362.
M. B. Ressan dan R. F. Hassan, “Naïve-Bayes family for sentiment analysis during COVID-19 pandemic and classification tweets,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 1, hal. 375–383, 2022, doi: 10.11591/ijeecs.v28.i1.pp375-383.
Tommy Suhendra, B. Intan, dan A. T. Martadinata, “ANALISIS SENTIMEN PENGGUNA APLIKASI NETFLIX PADA ULASAN GOOGLE PLAYSTORE MENGGUNAKAN METODE NAÏVE BAYES Tommy,” ESCAF 3rd, vol. 2, no. 2, hal. 1011–1022, 2024, doi: 10.47065/bits.v6i2.5528.
F. Sidik, I. Suhada, A. H. Anwar, dan F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, hal. 34, 2022, doi: 10.26418/jlk.v5i1.79.
Y. A. Singgalen, “Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW,” J. Inf. Syst. Res., vol. 4, no. 4, hal. 1343–1353, 2023, doi: 10.47065/josh.v4i4.3917.
H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, hal. 31, 2022, doi: 10.13057/ijas.v5i1.56825.
S. A. Pratomo, S. Al Faraby, dan M. D. Purbolaksono, “Analisis Sentimen Pengaruh Kombinasi Ekstraksi Fitur TF-IDF dan Lexicon Pada Ulasan Film Menggunakan Metode KNN,” e-Proceeding Eng., vol. 8, no. 5, hal. 10116–10126, 2021, [Daring]. Tersedia pada: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15726
A. Muzaki dan A. Witanti, “Sentimen Analisis Masyarakat Di Twitter Terhadap Pilkada 2020Ditengah Pandemic Covid-19 Dengan Metode NaïVe Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, hal. 101–107, 2021.
A. Septiarini, Rizqi Saputra, Andi Tejawati, dan Masna Wati, “Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, hal. 927–935, 2021, doi: 10.29207/resti.v5i5.3435.
R. Faiz Ananda, A. Syahri, dan F. N. Hasan, “Sentiment Analysis of Customer Satisfaction in Gojek and Grab Application Reviews Using the Naive Bayes Algorithm,” J. Tek. Inform. (JUTIF).1, vol. 5, no. 1, hal. 233–241, 2024, [Daring]. Tersedia pada: https://doi.org/10.52436/1.jutif.2024.5.1.1680
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Komentar Media Sosial Twitter Terhadap Tes CPNS dengan Algoritma Naive Bayes
Pages: 1477−1489
Copyright (c) 2024 Rifki Nurhidayat, Nirwana Hendrastuty

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).