Klasifikasi Kematangan Buah Mangga Menggunakan Pendekatan Deep Learning Dengan Arsitektur DenseNet-121 dan Augmentasi Data
Abstract
Mango is a seasonal fruit in Indonesia. In lowland areas and hot climates, this mango plant can grow abundantly. People who use mangoes generally focus more on the characteristics of the fruit which require a more precise classification to be more certain. Traditional classifications sometimes fail to properly articulate maturity criteria. This research classifies mango ripeness using a deep learning approach with densenet-121 architecture, parameters, learning rate, dropout, and data augmentation. Augmentation is the process of changing or modifying an image in such a way that the computer will detect that the image has been changed is the same picture. The original dataset was 895 data, after being augmented it became 1790 data consisting of three classes, namely ripe mango, young mango, and rotten mango. The test compares the original data and the original data added with augmentation. Accuracy using original data is 95.95%. Meanwhile, using original data combined with augmentation gets an accuracy of 99.73%
Downloads
References
F. Hermanto Laia, R. Rosnelly, K. Buulolo, M. Christin Lase, and A. Naswar, “Klasifikasi Kematangan Buah Mangga Madani Berdasarkan Bentuk Dengan Jaringan Syaraf Tiruan Metode Perception,” Device, vol. 13, no. 1, pp. 14–20, 2023.
B. L. Iverson and P. B. Dervan, “analisis struktur kovarian terhadap indikator terkait kesehatan pada lansia yang tinggal di rumah dengan fokus pada rasa subjektif terhadap kesehatan” pp. 7823–7830.
Fitrianingsih and Rodiah, “Klasifikasi Jenis Citra Daun Mangga Menggunakan Convolutional Neural Network,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 3, pp. 223–238, 2020, doi: 10.35760/tr.2020.v25i3.3519.
A. Y. Saleh and E. Liansitim, “Palm oil classification using deep learning,” Sci. Inf. Technol. Lett., vol. 1, no. 1, pp. 1–8, 2020, doi: 10.31763/sitech.v1i1.1.
N. Nana, D. Iskandar Mulyana, A. Akbar, and M. Zikri, “Optimasi Klasifikasi Buah Anggur Menggunakan Data Augmentasi dan Convolutional Neural Network,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 11, no. 2, pp. 148–161, 2022, doi: 10.30591/smartcomp.v11i2.3527.
N. Hasan, Y. Bao, A. Shawon, and Y. Huang, “DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image,” SN Comput. Sci., vol. 2, no. 5, pp. 1–11, 2021, doi: 10.1007/s42979-021-00782-7.
S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 450, 2022, doi: 10.30865/json.v3i4.4167.
D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, and A. Rangga, “Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan Cnn,” J. Sci. Soc. Res., vol. 5, no. 2, p. 244, 2022, doi: 10.54314/jssr.v5i2.789.
C. Bagus and M. Imron, “Klasifikasi Buah Mangga Berdasarkan Tingkat Kematangan Menggunakan Least-Squares Support Vector Machine,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 10, no. 2, pp. 1–8, 2018, doi: 10.35891/explorit.v10i2.1255.
Y. R. Prayogi and S. N. Budiman, “Color Grading Systems to Classify Ripeness of Apple Mango Fruit,” Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 3, no. 2, pp. 57–61, 2018, doi: 10.25139/inform.v3i2.1010.
Y. Amelia, P. Eosina, and F. A. Setiawan, “Perbandingan Metode Deep Learning Dan Machine Learning Untuk Klasifikasi (Ujicoba Pada Data Penyakit Kanker Payudara),” Inova-Tif, vol. 1, no. 2, p. 109, 2018, doi: 10.32832/inova-tif.v1i2.5449.
R. D. Gottapu and C. H. Dagli, “DenseNet for anatomical brain segmentation,” Procedia Comput. Sci., vol. 140, pp. 179–185, 2018, doi: 10.1016/j.procs.2018.10.327.
A. Arkadia, S. Ayu Damayanti, and D. Sandya Prasvita, “Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN,” Pros. Semin. Nas. Mhs. Bid. Ilmu Komput. dan Apl., vol. 2, no. 2, pp. 158–165, 2021, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/1813
T. Chauhan, H. Palivela, and S. Tiwari, “Optimization and fine-tuning of DenseNet model for classification of COVID-19 cases in medical imaging,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100020, 2021, doi: 10.1016/j.jjimei.2021.100020.
A. Wikarta, A. Sigit Pramono, and J. B. Ariatedja, “Analisa Bermacam Optimizer Pada Convolutional Neural Network Untuk Deteksi Pemakaian Masker Pengemudi Kendaraan,” Semin. Nas. Inform., vol. 2020, no. Semnasif, pp. 69–72, 2020.
W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus,” J. Simantec, vol. 7, no. 2, pp. 48–53, 2020, doi: 10.21107/simantec.v7i2.6551.
F. P. Rachman, “Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing,” J. Teknol. dan Manaj. Inform., vol. 7, no. 2, pp. 113–121, 2021, doi: 10.26905/jtmi.v7i2.6506.
D. Husen, K. Kusrini, and K. Kusnawi, “Deteksi Hama Pada Daun Apel Menggunakan Algoritma Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2103, 2022, doi: 10.30865/mib.v6i4.4667.
M. F. Naufal and S. F. Kusuma, “Analisis Perbandingan Algoritma Machine Learning dan Deep Learning untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 873–882, 2023, doi: 10.25126/jtiik.20241046823.
N. Hadianto, H. B. Novitasari, and A. Rahmawati, “Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 163–170, 2019, doi: 10.33480/pilar.v15i2.658.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Kematangan Buah Mangga Menggunakan Pendekatan Deep Learning Dengan Arsitektur DenseNet-121 dan Augmentasi Data
Pages: 236−244
Copyright (c) 2024 Rizkiya Indah Permata, Febi Yanto, Elvia Budianita, Iwan Iskandar, Fadhilah Syafria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).





















