Penerapan Algoritma K-Medoids dan FP-Growth dengan Model RFM untuk Kombinasi Produk
Abstract
Competition in the business world has increased, resulting in companies having to optimize sales and retain their customers. Customers are an important company asset that must be well looked after. The aim of customer segmentation is to understand customer purchasing behavior so that companies can implement appropriate marketing strategies. Aurel Mini Mart is a retail business that does not yet consider the recency, frequency and monetary value of customer shopping. So far, promotions have been carried out only based on estimates, without taking into account accurate data and information. This research combines the RFM model with data mining techniques to segment customers. Based on the 5 clusters formed from the clustering process, gold customers are in cluster 1 which has high loyalty with low recency value, high frequency and high monetary value. This shows that customers in this segment often make purchases for quite large amounts of money. Meanwhile, customers in clusters 2, 3, 4, and 5 are dormant customers who rarely make transactions and the amount of money spent is also small. After the customer segmentation process is complete, the next step is to use the FP-Growth Algorithm to associate the products purchased by customers. This aims to obtain a better product combination, so that the sales strategy can be more effective and the company can make a profit.
Downloads
References
S. M. Monalisa and D. A. Anjainah, “Analisis Rekomendasi Produk Berdasarkan Segmentasi Pelanggan Menggunakan Algoritma DBSCAN dan FP-Growth,” Techno. Com, vol. 21, no. 4, pp. 948–956, 2022.
A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 3, pp. 103–108, 2019.
S. F. Octavia, M. Mustakim, I. Permana, and S. Monalisa, “Penerapan Algoritma Association Rules Dalam Penentuan Pola Pembelian Berdasarkan Hasil Clustering,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 956–965, 2023.
V. Dawane, P. Waghodekar, and J. Pagare, “Rfm analysis using k-means clustering to improve revenue and customer retention,” in Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021), 2021.
D. R. Ramadhan and N. Rokhman, “Segmentation-Based Sequential Rules For Product Promotion Recommendations As Sales Strategy (Case Study: Dayra Store),” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. 3, pp. 243–252, 2020.
A. Wibowo and A. R. Handoko, “Segmentasi Pelanggan Ritel Produk Farmasi Obat Menggunakan Metode Data Mining Klasterisasi Dengan Analisis Recency Frequency Monetary (RFM) Termodifikasi,” J. Teknol. Inf. dan Ilmu Komput, vol. 7, no. 3, 2020.
I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 5, no. 1, pp. 119–125, 2019.
B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis segmentasi pelanggan menggunakan kombinasi RFM model dan teknik clustering,” Jurnal Terapan Teknologi Informasi, vol. 2, no. 1, pp. 23–32, 2018.
A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3, pp. 516–526, 2021.
S. I. Murpratiwi, I. G. A. Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,” Jurnal Pendidikan Teknologi dan Kejuruan, vol. 18, no. 2, pp. 152–163, 2021.
R. A. Suharjo and A. Wibowo, “Customer relationship management in retail using double association rule,” International Journal, vol. 8, no. 5, 2020.
A. R. Mulyawan, W. Gata, and S. Alfarizi, “MARKETING MAPS PADA LEMBAGA AMIL ZAKAT MENGGUNAKAN ALGORITMA CLUSTERING DAN ASSOCIATION RULES,” Sistemasi: Jurnal Sistem Informasi, vol. 9, no. 1, pp. 36–50, 2020.
I. D. Sudirman, R. S. Bahri, I. D. Utama, and C. I. Ratnapuri, “Using Association Rule to Analyze Hypermarket Customer Purchase Patterns,” Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 2021.
A. T. Suseno, A. R. Naufal, and M. Al Amin, “MARKET BASED ANALYSIS SEBAGAI PENINGKATAN PENJUALAN PRODUK MENGGUNAKAN ALGORITMA K-MEDOIDS DAN FP-GROWTH,” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 5, no. 2, pp. 301–308, 2022.
S. G. Setyorini, E. K. Sari, L. R. Elita, and S. A. Putri, “Analisis Keranjang Pasar Menggunakan Algoritma K-Means dan FP-Growth pada PT. Citra Mustika Pandawa: Market Basket Analysis with K-Means and FP-Growth Algorithm as Citra Mustika Pandawa Company,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 41–46, 2021.
G. J. Pabutungan and H. D. Purnomo, “Analisa Market Basket Analysis untuk Melihat Pola Transaksi Customer Menggunakan Algoritma Apriori dan FP-Growth,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 966–974, 2023.
L. A. Triana, N. I. Khoerida, N. T. Widiawati, and I. Tahyudin, “Implementation of the FP-Growth Algorithm in Sales Transactions for Menu Package Recommendations at Warung Oemah Tani,” Internet of Things and Artificial Intelligence Journal, vol. 2, no. 2, pp. 111–121, 2022.
N. F. Fahrudin and R. Rindiyani, “Comparison of K-Medoids and K-Means Algorithms in Segmenting Customers based on RFM Criteria,” in E3S Web of Conferences, EDP Sciences, 2024, p. 02008.
R. Siagian, P. Sirait, and A. Halim, “The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions,” Sistemasi: Jurnal Sistem Informasi, vol. 11, no. 2, pp. 260–270, 2022.
A. Madani, A. R. A. Rahmah, F. N. F. Nurunnisa, and A. E. A. Elia, “Segmentasi Pelanggan pada BC HNI 2 Pekanbaru dengan Menerapkan Algoritma K-Medoids dan Model RFM (Recency, Frequency, Monetery): Customer Segmentation at BC HNI 2 Pekanbaru by Applying the K-Medoids Algorithm and Recency, Frequency, Monetary (RFM) Model,” in SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 2022, pp. 179–186.
S. M. S. Hosseini, A. Maleki, and M. R. Gholamian, “Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty,” Expert Syst Appl, vol. 37, no. 7, pp. 5259–5264, 2010.
R. U. Khan, Y. Salamzadeh, Q. Iqbal, and S. Yang, “The impact of customer relationship management and company reputation on customer loyalty: The mediating role of customer satisfaction,” Journal of Relationship Marketing, vol. 21, no. 1, pp. 1–26, 2022.
S. Lamrhari, H. El Ghazi, M. Oubrich, and A. El Faker, “A social CRM analytic framework for improving customer retention, acquisition, and conversion,” Technol Forecast Soc Change, vol. 174, p. 121275, 2022.
A. Z. Putri, M. Afdal, S. Monalisa, and I. Permana, “Penerapan Algoritma Fuzzy C-Means Pada Segmentasi Pelanggan B2B dengan Model LRFM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 1423–1432, 2023.
R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, vol. 11, no. 1, p. 32, Apr. 2020, doi: 10.24843/lkjiti.2020.v11.i01.p04.
N. Mirantika, T. S. Syamfithriani, and R. Trisudarmo, “Implementasi Algoritma K-Medoids Clustering Untuk Menentukan Segmentasi Pelanggan,” NUANSA INFORMATIKA, vol. 17, no. 1, pp. 196–204, 2023.
A. N. Shabrina, M. Afdal, and S. Monalisa, “Comparison Of K-Means, K-Medoids, and Fuzzy C-Means Algorithms for Clustering Drug User’s Addiction Levels,” Jurnal Sistem Cerdas, vol. 6, no. 2, pp. 113–122, 2023.
Y. Syahra, Y. Yusnidah, and B. Andika, “Penerapan Algoritma Fuzzy C-Means Dipadukan Dengan Model Fuzzy Recency Frequency Monetary (RFM) Untuk Customer Relationship Management (CRM)(Studi Kasus Di TokoSweet Amirah Medan),” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. 15, no. 1, pp. 7–16, 2019.
R. M. D. B. Akbar, P. Palupiningsih, and B. Prayitno, “IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK PENENTUAN REKOMENDASI PRODUK UMKM BERDASARKAN FREKUENSI PEMBELIAN,” Jurnal Teknoinfo, vol. 17, no. 2, pp. 493–501, 2023.
Z. C. Dwynne, D. N. Aini, T. A. Pertiwi, S. Suryani, and D. Pramana, “Cluster Tingkat Kecanduan Game Online Pada Mahasiswa Fakultas Sains Dan Teknologi Dan Korelasinya Terhadap Minat Belajar: Cluster Level of Online Game Addiction in Students of the Faculty of Science and Technology and its Correlation with Learning Interest,” in SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 2023, pp. 126–132.
F. Hardiyanti, H. S. Tambunan, and I. S. Saragih, “PENERAPAN METODE K-MEDOIDS CLUSTERING PADA PENANGANAN KASUS DIARE DI INDONESIA,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, Dec. 2019, doi: 10.30865/komik.v3i1.1666.
T. Marzuqah, I. Permana, and M. Afdal, “Penerapan Algoritma FP-Growth Dalam Pencarian Hubungan Antara Waktu Pembelian Dan Barang yang Dibeli Untuk Strategi Promosi Penjualan,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 3, pp. 697–703, 2023.
I. Ismarmiaty and R. Rismayati, “Product Sales Promotion Recommendation Strategy with Purchase Pattern Analysis FP-Growth Algorithm,” Sinkron: jurnal dan penelitian teknik informatika, vol. 8, no. 1, pp. 202–211, 2023.
N. P. Dharshinni, E. Bangun, S. Karunia, R. Damayanti, G. Rophe, and R. Pandapotan, “Menu Package Recommendation using Combination of K-Means and FP-Growth Algorithms at Bakery Stores: Menu Package Recommendation using Combination of K-Means and FP-Growth Algorithms at Bakery Stores,” Jurnal Mantik, vol. 4, no. 2, pp. 1272–1277, 2020.
S. Z. Harahap and A. Nastuti, “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako Dan Kebutuhan Harian Dengan Menggunakan Algoritma Fp-Growth (Studi Kasus Di Ulfamart Lubuk Alung),” Informatika, vol. 7, no. 3, pp. 111–119, 2019.
A. Wilrose, M. Afdal, S. Monalisa, and M. Munzir, “Penerapan Algoritma FP-Growth untuk Menentukan Strategi Promosi Berdasarkan Waktu dan Pembelian Produk,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3577.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Medoids dan FP-Growth dengan Model RFM untuk Kombinasi Produk
Pages: 721-732
Copyright (c) 2024 Tata Ayunita Pertiwi, M. Afdal, Rice Novita, Mustakim Mustakim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).