Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store


  • Yudistira Arya Wibisono * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • M. Afdal Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Rice Novita Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • (*) Corresponding Author
Keywords: application; analysis; online lending; random forest; sentiment

Abstract

Online lending programs are examples of financial service platforms offered directly by commercial fintech players. However, there are rampant cases of fraud and unethical actions by some online lenders such as threatening and harassing billing methods due to late payments. This research aims to classify sentiment from user reviews of online loan applications on the Google Play Store into positive, negative, or neutral categories. This research conducts sentiment analysis of user reviews of online loan applications such as AdaKami, AdaModal, Cairin, FinPlus and UangMe using a text mining approach. This approach can perform sentiment classification on user reviews quickly. Data was collected using the scrapping technique on the Google Play Store and obtained a total of 200 data on each online loan application. The modeling used in this research is the division of training data and test data as much as 80:20. The highest accuracy results using the Random Forest algorithm are Cairin and UangMe applications with 85% accuracy. While the application that gets the lowest accuracy result is the AdaModal application with 75% accuracy. A visualization analysis using word clouds was also conducted to understand the context of user reviews of the pinjol apps. The results show that users almost always discuss loan limits in every sentiment across the five apps.

Downloads

Download data is not yet available.

References

A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC,” Jurnal Rekayasa Perangkat Lunak, vol. 2, no. 2, 2021, [Online]. Available: http://jurnal.bsi.ac.id/index.php/reputasi

M. I. Ghozali, W. H. Sugiharto, and A. Fajar Iskandar, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” Media Online), vol. 3, no. 6, pp. 1340–1348, 2023, doi: 10.30865/klik.v3i6.936.

T. D. Ramadhan, D. Wahiddin, and E. E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” vol. IV, no. 1, 2023, [Online]. Available: www.tripadvisor.com

T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” Jurnal Informatika Ekonomi Bisnis, pp. 65–71, Aug. 2022, doi: 10.37034/infeb.v4i3.146.

S. Khomsah, “Sentiment Analysis On YouTube Comments Using Word2Vec and Random Forest Sentimen Analisis pada Opini YouTube Menggunakan Word2Vec dan Random Forest,” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 61–72, 2021, doi: 10.31515/telematika.v18i1.4493.

A. Wandani, “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes,” 2021.

E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” TRANSFORMTIKA, vol. 18, no. 1, pp. 71–80, 2020, [Online]. Available: www.nusamandiri.ac.id,

N. Habibah, E. Budianita, M. Fikry, and I. Iskandar, “Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based dan K-Nearest Neighbor,” Jurnal Riset Komputer), vol. 10, no. 1, pp. 2407–389, doi: 10.30865/jurikom.v10i1.5429.

I. Afdhal et al., “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, 2022.

A. Putra and R. Latifah, “Seminar Nasional Penelitian LPPM UMJ Website: http://jurnal.umj.ac.id/index.php/semnaslit E-ISSN:2745-6080 ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP APLIKASI PINJAMAN ONLINE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE.”, vol. 01, no. 1, 2022. [Online]. Available: http://jurnal.umj.ac.id/index.php/semnaslit

T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

M. Alfyando, “Perbandingan Algoritma Random Forest dan Logistic Regression Untuk Analisis Sentimen Ulasan Aplikasi Tumbuh Kembang Anak Di Play Store,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 2, no. 1, pp. 77–86, 2024, doi: 10.59581/jusiik-widyakarya.v2i1.2262.

V. Fitriyana et al., “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” 2023.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

M. Y. Aldean, Paradise, and N. A. S. Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” Journal of Informatics, Information System, Software Engineering and Applications, vol. 4, no. 2, pp. 64–72, 2022, doi: 10.20895/INISTA.V4I2.

H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

B. Bayu Baskoro et al., “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” Journal of Informatics, Information System, Software Engineering and Applications, vol. 3, no. 2, pp. 21–029, 2021, doi: 10.20895/INISTA.V3I2.

S. Fide, “Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (SVM) Dan Asosiasi,” vol. 10, no. 3, pp. 346–358, 2021, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” Jurnal Informatika UPGRIS, vol. 7, no. 1, pp. 36–40, 2021.

D. Alita and A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store

Dimensions Badge
Article History
Submitted: 2024-06-18
Published: 2024-09-07
Abstract View: 52 times
PDF Download: 50 times
How to Cite
Wibisono, Y., Afdal, M., Mustakim, M., & Novita, R. (2024). Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store. Building of Informatics, Technology and Science (BITS), 6(2), 619-626. https://doi.org/10.47065/bits.v6i2.5368
Section
Articles