Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store
Abstract
Online lending programs are examples of financial service platforms offered directly by commercial fintech players. However, there are rampant cases of fraud and unethical actions by some online lenders such as threatening and harassing billing methods due to late payments. This research aims to classify sentiment from user reviews of online loan applications on the Google Play Store into positive, negative, or neutral categories. This research conducts sentiment analysis of user reviews of online loan applications such as AdaKami, AdaModal, Cairin, FinPlus and UangMe using a text mining approach. This approach can perform sentiment classification on user reviews quickly. Data was collected using the scrapping technique on the Google Play Store and obtained a total of 200 data on each online loan application. The modeling used in this research is the division of training data and test data as much as 80:20. The highest accuracy results using the Random Forest algorithm are Cairin and UangMe applications with 85% accuracy. While the application that gets the lowest accuracy result is the AdaModal application with 75% accuracy. A visualization analysis using word clouds was also conducted to understand the context of user reviews of the pinjol apps. The results show that users almost always discuss loan limits in every sentiment across the five apps.
Downloads
References
A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma SVM Dan NBC,” Jurnal Rekayasa Perangkat Lunak, vol. 2, no. 2, 2021, [Online]. Available: http://jurnal.bsi.ac.id/index.php/reputasi
M. I. Ghozali, W. H. Sugiharto, and A. Fajar Iskandar, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Pinjaman Online Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” Media Online), vol. 3, no. 6, pp. 1340–1348, 2023, doi: 10.30865/klik.v3i6.936.
T. D. Ramadhan, D. Wahiddin, and E. E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” vol. IV, no. 1, 2023, [Online]. Available: www.tripadvisor.com
T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” Jurnal Informatika Ekonomi Bisnis, pp. 65–71, Aug. 2022, doi: 10.37034/infeb.v4i3.146.
S. Khomsah, “Sentiment Analysis On YouTube Comments Using Word2Vec and Random Forest Sentimen Analisis pada Opini YouTube Menggunakan Word2Vec dan Random Forest,” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 61–72, 2021, doi: 10.31515/telematika.v18i1.4493.
A. Wandani, “Sentimen Analisis Pengguna Twitter pada Event Flash Sale Menggunakan Algoritma K-NN, Random Forest, dan Naive Bayes,” 2021.
E. Fitri, Y. Yuliani, S. Rosyida, and W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” TRANSFORMTIKA, vol. 18, no. 1, pp. 71–80, 2020, [Online]. Available: www.nusamandiri.ac.id,
N. Habibah, E. Budianita, M. Fikry, and I. Iskandar, “Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based dan K-Nearest Neighbor,” Jurnal Riset Komputer), vol. 10, no. 1, pp. 2407–389, doi: 10.30865/jurikom.v10i1.5429.
I. Afdhal et al., “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 1, 2022.
A. Putra and R. Latifah, “Seminar Nasional Penelitian LPPM UMJ Website: http://jurnal.umj.ac.id/index.php/semnaslit E-ISSN:2745-6080 ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP APLIKASI PINJAMAN ONLINE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE.”, vol. 01, no. 1, 2022. [Online]. Available: http://jurnal.umj.ac.id/index.php/semnaslit
T. Fadiyah Basar, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen Pengguna Twitter terhadap Pembayaran Cashless menggunakan Shopeepay dengan Algoritma Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id
M. Alfyando, “Perbandingan Algoritma Random Forest dan Logistic Regression Untuk Analisis Sentimen Ulasan Aplikasi Tumbuh Kembang Anak Di Play Store,” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 2, no. 1, pp. 77–86, 2024, doi: 10.59581/jusiik-widyakarya.v2i1.2262.
V. Fitriyana et al., “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” 2023.
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id
M. Y. Aldean, Paradise, and N. A. S. Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” Journal of Informatics, Information System, Software Engineering and Applications, vol. 4, no. 2, pp. 64–72, 2022, doi: 10.20895/INISTA.V4I2.
H. Chyntia Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id
B. Bayu Baskoro et al., “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” Journal of Informatics, Information System, Software Engineering and Applications, vol. 3, no. 2, pp. 21–029, 2021, doi: 10.20895/INISTA.V3I2.
S. Fide, “Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (SVM) Dan Asosiasi,” vol. 10, no. 3, pp. 346–358, 2021, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” Jurnal Informatika UPGRIS, vol. 7, no. 1, pp. 36–40, 2021.
D. Alita and A. Rahman, “Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier,” 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store
Pages: 619-626
Copyright (c) 2024 Yudistira Arya Wibisono, M. Afdal, Mustakim Mustakim, Rice Novita
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).