Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan
Abstract
To create and maintain a superior competitive advantage in a knowledge-based economy, businesses must be able to utilize data and manage customer relationships through the implementation of Customer Relationship Management (CRM), particularly Social CRM. Social CRM is a renewal of business strategy that is created to engage customers in a collaborative conversation and create mutually beneficial value in a trusted and transparent business environment. Seeing this development as one of the successful culinary companies in the Souvenir sector in Pekanbaru, the company must be able to process all the information obtained. Currently, the company has never analyzed comments on social media, especially the Instagram account. These comments are useful for evaluation material and can be a parameter of customer satisfaction and to see the potential for customer retention. To assess positive and negative comments on the Instagram account, sentiment analysis can be carried out using machine learning, namely 3 classification algorithms, namely Naive Bayes Classifier (NBC), Support Vector Machine (SVM) and Random Forest (RF). The sentiment results show that the SVM and NBC algorithms obtain the best accuracy of 74.26% compared to RF, and the results of the social CRM analysis show that customers are more satisfied with the company in terms of products, services, and actions taken by the company, so that the company is considered capable of retaining its customers.
Downloads
References
M. Jami Pour and M. Hosseinzadeh, An integrated framework of change management for social CRM implementation, vol. 19, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s10257-020-00479-z.
P. Harrigan, M. P. Miles, Y. Fang, and S. K. Roy, “The role of social media in the engagement and information processes of social CRM,” Int. J. Inf. Manage., vol. 54, no. April, p. 102151, 2020, doi: 10.1016/j.ijinfomgt.2020.102151.
P. Charoensukmongkol and P. Sasatanun, “Social media use for CRM and business performance satisfaction: The moderating roles of social skills and social media sales intensity,” Asia Pacific Manag. Rev., vol. 22, no. 1, pp. 25–34, 2017, doi: 10.1016/j.apmrv.2016.10.005.
R. B. Christoph F. Breidbach and L. Hollebeek, “The service revolution and its marketing implications: service logic vs service-dominant logic,” Manag. Serv. Qual., vol. 24, no. 6, pp. 592–611, 2014.
V. Guerola-Navarro, H. Gil-Gomez, R. Oltra-Badenes, and J. Sendra-García, “Customer relationship management and its impact on innovation: A literature review,” J. Bus. Res., vol. 129, no. March, pp. 83–87, 2021, doi: 10.1016/j.jbusres.2021.02.050.
J. P. Wildyaksanjani and D. Sugiana, “Strategi Customer Relationship Management (CRM) PT Angkasa Pura II (Persero),” J. Kaji. Komun., vol. 6, no. 1, p. 10, 2018, doi: 10.24198/jkk.v6i1.8754.
R. Perez-Vega, P. Hopkinson, A. Singhal, and M. M. Mariani, “From CRM to social CRM: A bibliometric review and research agenda for consumer research,” J. Bus. Res., vol. 151, no. June, pp. 1–16, 2022, doi: 10.1016/j.jbusres.2022.06.028.
R. S. Bahri and L. Lahindah, “Cross Channel Integration Dalam Meningkatkan Retensi Pelanggan Pada Industri Ritel,” Ekon. Keuangan, Investasi dan Syariah, vol. 3, no. 3, pp. 495–501, 2022, doi: 10.47065/ekuitas.v3i3.1220.
S. W. Sari, S. Sunaryo, and M. Mugiono, “the Effect of Service Quality on Customer Retention Through Commitment and Satisfaction As Mediation Variables in Java Eating Houses,” J. Apl. Manaj., vol. 16, no. 4, pp. 593–604, 2018, doi: 10.21776/ub.jam.2018.016.04.05.
A. P. Sutrisno and I. D. Mayangsari, “Pengaruh Penggunaan Media Sosial Instagram @Humasbdg Terhadap Pemenuhan Kebutuhan Informasi Followers,” J. Common, vol. 5, no. 2, pp. 118–133, 2022, doi: 10.34010/common.v5i2.5143.
A. N. Jalal, M. Bahari, and A. K. Tarofder, “Transforming traditional CRM into social CRM: An empirical investigation in Iraqi healthcare industry,” Heliyon, vol. 7, no. 5, p. e06913, 2021, doi: 10.1016/j.heliyon.2021.e06913.
T. Lohanda and A. Rusdianto Berto, “Dapatkah Aktivitas Manajemen Hubungan Pelanggan Melalui Media Sosial Meningkatkan Loyalitas Pelanggan? Can Social Customer Relationship Management Activities Evoke Customer Loyalty?,” J. Stud. Komun. dan Media, vol. 25, no. 2, pp. 267–276, 2021, doi: 10.31445/jskm.2021.4439.
J. Latuny, “Analysis Social CRM against Customer Retention Using Naive Bayes Classifier (Case Study: Xyz. Ltd),” Int. J. Comput. Sci. …, vol. 7, no. 7, pp. 148–157, 2018, [Online]. Available: https://search.proquest.com/openview/5b4cec6c4478c2edafb523ad2ad6275a/1?pq-origsite=gscholar&cbl=2044552
R. Sanusi, F. D. Astuti, and I. Y. Buryadi, “Sentiment analysis on twitter towards pre-employment card program with recurrent neural network,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 89–99, 2021.
S. Sirisuriya, “A Comparative Study on Web Scraping,” 8th Int. Res. Conf. KDU, no. November, pp. 135–140, 2015.
M. Harahap, B. P. A. Sihombing, O. A. F. Laia, B. T. Saragih, and K. Dharma, “Analisis Sentimen Review Penjualan Produk Umkm Pada Kabupaten Nias Dengan Komparasi Algoritma Klasifikasi Machine Learning,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 5, no. 2, pp. 147–154, 2021, doi: 10.46880/jmika.vol5no2.pp147-154.
N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,” 2019.
M. Naïve and B. Classifier, “Mega kurnia maulidina 5150411382,” 2020.
Dedi Darwis, Nery Siskawati, and Zaenal Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2020.
S. Lamrhari, H. Elghazi, and A. El Faker, “Random Forest-based Approach for Classifying Customers in Social CRM,” 2020 IEEE Int. Conf. Technol. Manag. Oper. Decis. ICTMOD 2020, 2020, doi: 10.1109/ICTMOD49425.2020.9380602.
D. Pramana, M. Afdal, Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.
R. Sistem, S. Kurniawan, W. Gata, D. A. Puspitawati, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada,” vol. 1, no. 10, pp. 2–8, 2021.
M. H. Saragih and A. S. Girsang, “Sentiment analysis of customer engagement on social media in transport online,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018-Janua, pp. 24–29, 2017, doi: 10.1109/SIET.2017.8304103.
P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.
W. S. Gemilang, “Artificial Neural Networks - Models and Applications,” Artif. Neural Networks - Model. Appl., vol. 7, no. 4, pp. 2849–2855, 2016, doi: 10.5772/61493.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.
H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes , Support Vector Machine ( SVM ), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” vol. 5, no. 4, pp. 578–584, 2021.
S. F. Sabbeh, “Machine-learning techniques for customer retention: A comparative study,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 273–281, 2018, doi: 10.14569/IJACSA.2018.090238.
F. Komunikasi, U. M. Surakarta, J. A. Yani, and T. Pos, “Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest,” vol. 9, no. 1, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan
Pages: 606-618
Copyright (c) 2024 Qhairani Frilla F. Safiesza, M Afdal, Rice Novita, Mustakim Mustakim
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).