Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan


  • Qhairani Frilla F. Safiesza * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • M Afdal Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Rice Novita Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • (*) Corresponding Author
Keywords: Machine Learning; Naive Bayes Classifier; Random Forest; Social CRM; Support Vector Machine; Customer Retention; Analysis Sentiment

Abstract

To create and maintain a superior competitive advantage in a knowledge-based economy, businesses must be able to utilize data and manage customer relationships through the implementation of Customer Relationship Management (CRM), particularly Social CRM. Social CRM is a renewal of business strategy that is created to engage customers in a collaborative conversation and create mutually beneficial value in a trusted and transparent business environment. Seeing this development as one of the successful culinary companies in the Souvenir sector in Pekanbaru, the company must be able to process all the information obtained. Currently, the company has never analyzed comments on social media, especially the Instagram account. These comments are useful for evaluation material and can be a parameter of customer satisfaction and to see the potential for customer retention. To assess positive and negative comments on the Instagram account, sentiment analysis can be carried out using machine learning, namely 3 classification algorithms, namely Naive Bayes Classifier (NBC), Support Vector Machine (SVM) and Random Forest (RF). The sentiment results show that the SVM and NBC algorithms obtain the best accuracy of 74.26% compared to RF, and the results of the social CRM analysis show that customers are more satisfied with the company in terms of products, services, and actions taken by the company, so that the company is considered capable of retaining its customers.

Downloads

Download data is not yet available.

References

M. Jami Pour and M. Hosseinzadeh, An integrated framework of change management for social CRM implementation, vol. 19, no. 1. Springer Berlin Heidelberg, 2021. doi: 10.1007/s10257-020-00479-z.

P. Harrigan, M. P. Miles, Y. Fang, and S. K. Roy, “The role of social media in the engagement and information processes of social CRM,” Int. J. Inf. Manage., vol. 54, no. April, p. 102151, 2020, doi: 10.1016/j.ijinfomgt.2020.102151.

P. Charoensukmongkol and P. Sasatanun, “Social media use for CRM and business performance satisfaction: The moderating roles of social skills and social media sales intensity,” Asia Pacific Manag. Rev., vol. 22, no. 1, pp. 25–34, 2017, doi: 10.1016/j.apmrv.2016.10.005.

R. B. Christoph F. Breidbach and L. Hollebeek, “The service revolution and its marketing implications: service logic vs service-dominant logic,” Manag. Serv. Qual., vol. 24, no. 6, pp. 592–611, 2014.

V. Guerola-Navarro, H. Gil-Gomez, R. Oltra-Badenes, and J. Sendra-García, “Customer relationship management and its impact on innovation: A literature review,” J. Bus. Res., vol. 129, no. March, pp. 83–87, 2021, doi: 10.1016/j.jbusres.2021.02.050.

J. P. Wildyaksanjani and D. Sugiana, “Strategi Customer Relationship Management (CRM) PT Angkasa Pura II (Persero),” J. Kaji. Komun., vol. 6, no. 1, p. 10, 2018, doi: 10.24198/jkk.v6i1.8754.

R. Perez-Vega, P. Hopkinson, A. Singhal, and M. M. Mariani, “From CRM to social CRM: A bibliometric review and research agenda for consumer research,” J. Bus. Res., vol. 151, no. June, pp. 1–16, 2022, doi: 10.1016/j.jbusres.2022.06.028.

R. S. Bahri and L. Lahindah, “Cross Channel Integration Dalam Meningkatkan Retensi Pelanggan Pada Industri Ritel,” Ekon. Keuangan, Investasi dan Syariah, vol. 3, no. 3, pp. 495–501, 2022, doi: 10.47065/ekuitas.v3i3.1220.

S. W. Sari, S. Sunaryo, and M. Mugiono, “the Effect of Service Quality on Customer Retention Through Commitment and Satisfaction As Mediation Variables in Java Eating Houses,” J. Apl. Manaj., vol. 16, no. 4, pp. 593–604, 2018, doi: 10.21776/ub.jam.2018.016.04.05.

A. P. Sutrisno and I. D. Mayangsari, “Pengaruh Penggunaan Media Sosial Instagram @Humasbdg Terhadap Pemenuhan Kebutuhan Informasi Followers,” J. Common, vol. 5, no. 2, pp. 118–133, 2022, doi: 10.34010/common.v5i2.5143.

A. N. Jalal, M. Bahari, and A. K. Tarofder, “Transforming traditional CRM into social CRM: An empirical investigation in Iraqi healthcare industry,” Heliyon, vol. 7, no. 5, p. e06913, 2021, doi: 10.1016/j.heliyon.2021.e06913.

T. Lohanda and A. Rusdianto Berto, “Dapatkah Aktivitas Manajemen Hubungan Pelanggan Melalui Media Sosial Meningkatkan Loyalitas Pelanggan? Can Social Customer Relationship Management Activities Evoke Customer Loyalty?,” J. Stud. Komun. dan Media, vol. 25, no. 2, pp. 267–276, 2021, doi: 10.31445/jskm.2021.4439.

J. Latuny, “Analysis Social CRM against Customer Retention Using Naive Bayes Classifier (Case Study: Xyz. Ltd),” Int. J. Comput. Sci. …, vol. 7, no. 7, pp. 148–157, 2018, [Online]. Available: https://search.proquest.com/openview/5b4cec6c4478c2edafb523ad2ad6275a/1?pq-origsite=gscholar&cbl=2044552

R. Sanusi, F. D. Astuti, and I. Y. Buryadi, “Sentiment analysis on twitter towards pre-employment card program with recurrent neural network,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 89–99, 2021.

S. Sirisuriya, “A Comparative Study on Web Scraping,” 8th Int. Res. Conf. KDU, no. November, pp. 135–140, 2015.

M. Harahap, B. P. A. Sihombing, O. A. F. Laia, B. T. Saragih, and K. Dharma, “Analisis Sentimen Review Penjualan Produk Umkm Pada Kabupaten Nias Dengan Komparasi Algoritma Klasifikasi Machine Learning,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 5, no. 2, pp. 147–154, 2021, doi: 10.46880/jmika.vol5no2.pp147-154.

N. Hafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid-19 menggunakan Support Vector Machine dan Naïve Bayes,” 2019.

M. Naïve and B. Classifier, “Mega kurnia maulidina 5150411382,” 2020.

Dedi Darwis, Nery Siskawati, and Zaenal Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2020.

S. Lamrhari, H. Elghazi, and A. El Faker, “Random Forest-based Approach for Classifying Customers in Social CRM,” 2020 IEEE Int. Conf. Technol. Manag. Oper. Decis. ICTMOD 2020, 2020, doi: 10.1109/ICTMOD49425.2020.9380602.

D. Pramana, M. Afdal, Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023, doi: 10.30865/mib.v7i3.6523.

R. Sistem, S. Kurniawan, W. Gata, D. A. Puspitawati, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada,” vol. 1, no. 10, pp. 2–8, 2021.

M. H. Saragih and A. S. Girsang, “Sentiment analysis of customer engagement on social media in transport online,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018-Janua, pp. 24–29, 2017, doi: 10.1109/SIET.2017.8304103.

P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.

W. S. Gemilang, “Artificial Neural Networks - Models and Applications,” Artif. Neural Networks - Model. Appl., vol. 7, no. 4, pp. 2849–2855, 2016, doi: 10.5772/61493.

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes , Support Vector Machine ( SVM ), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” vol. 5, no. 4, pp. 578–584, 2021.

S. F. Sabbeh, “Machine-learning techniques for customer retention: A comparative study,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 273–281, 2018, doi: 10.14569/IJACSA.2018.090238.

F. Komunikasi, U. M. Surakarta, J. A. Yani, and T. Pos, “Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest,” vol. 9, no. 1, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan

Dimensions Badge
Article History
Submitted: 2024-06-03
Published: 2024-09-07
Abstract View: 50 times
PDF Download: 51 times
How to Cite
F. Safiesza, Q., Afdal, M., Novita, R., & Mustakim, M. (2024). Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan. Building of Informatics, Technology and Science (BITS), 6(2), 606-618. https://doi.org/10.47065/bits.v6i2.5269
Section
Articles