Analisa Perbandingan Complate Linkage AHC dan K-Medoids Dalam Pengelompokkan Data Kemiskinan di Indonesia
Abstract
The poverty rate in Indonesia has increased from 9.54 percent in March 2022 to 9.57 percent in September 2022 due to inflation and low wages and people's incomes. To overcome this problem, steps such as providing social assistance, creating decent jobs, and increasing wage standards are needed to increase people's purchasing power and reduce poverty in the future. The government needs to pay special attention to provinces with high poverty rates through special programs and efforts to increase income and the economy in these areas. Data Mining is a solution in solving this problem by utilizing the clustering method which is known as the clustering method. The clustering method used in this study is the AHC method and the K-Medoids method. In order to determine the provinces with the highest number of poor people, the AHC and K-Medoids clustering methods will be applied separately so that the final results of each will be analyzed. The results of the analysis show the formation of three clusters with different cluster locations. The application of the AHC method resulted in cluster 2 with the largest number of provinces, namely 22 provinces, followed by cluster 0 with 9 provinces, and cluster 1 with only 3 provinces. While the application of the K-Medoids method resulted in cluster 1 with the largest number of provinces, namely 22 provinces, followed by cluster 0 with 9 provinces, and cluster 2 with only 3 provinces. Although the location of the clusters is different between the two methods, the number of provinces in the cluster is the same so that a cluster with a total of 3 provinces is declared the province with the largest number of poor people.
Downloads
References
pengelompokan kasus Covid-19 di dunia,” SITEKIN J. Sains, Teknol. Dan Ind., vol. 18, no. 2, pp. 206–211, 2021.
U. Rizqi, “Gaussian Mixture Model dengan Algoritme Expectation Maximization untuk Pengelompokan Data Distribusi Air Bersih di Jawa Barat,” in PRISMA, Prosiding Seminar Nasional Matematika, 2023, vol. 6, pp. 745–750.
N. K. Zuhal, “Study Comparison K-Means Clustering Dengan Algoritma Hierarchical Clustering: AHC, K-Means Clustering, Study Comparison,” in STAINS (SEMINAR NASIONAL TEKNOLOGI & SAINS), 2022, vol. 1, no. 1, pp. 200–205.
A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan algoritma k-means dengan k-medoids pada pengelompokan armada kendaraan truk berdasarkan produktivitas,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 229–240, 2021.
S. Asmiatun, “Penerapan Metode K-Medoids Untuk Pengelompokkan Kondisi Jalan Di Kota Semarang,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 171–180, 2019, doi: 10.35957/jatisi.v6i2.193.
N. G. P. R. TARAM, I. K. G. SUKARSA, and I. G. A. M. SRINADI, “Pengelompokan Tingkat Kriminalitas Dengan Metode Agglomerative Dan K-Means Serta Peubah Pencirinya,” E-Jurnal Mat., vol. 8, no. 2, p. 102, 2019, doi: 10.24843/mtk.2019.v08.i02.p241.
I. Nasution, A. P. Windarto, and M. Fauzan, “Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi,” Build. Informatics, Technol. Sci., vol. 2, no. 2, pp. 76–83, 2020, doi: 10.47065/bits.v2i2.492.
R. H. Sukarna and Y. Ansori, “Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. Ilm. Sains dan Teknol., vol. 6, no. 1, pp. 50–61, 2022, doi: 10.47080/saintek.v6i1.1467.
F. O. Lusiana, I. Fatma, and A. P. Windarto, “Estimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Simalungun,” J. Informatics Manag. Inf. Technol., vol. 1, no. 2, pp. 79–84, 2021, [Online]. Available: https://hostjournals.com/
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
G. Gunadi and D. I. Sensuse, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :,” Telematika, vol. 4, no. 1, pp. 118–132, 2012.
A. Z. Siregar, “Implementasi Metode Regresi Linier Berganda Dalam Estimasi Tingkat Pendaftaran Mahasiswa Baru,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 3, pp. 133–137, 2021, [Online]. Available: https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/73
S. S. S, A. T. Purba, V. Marudut, M. Siregar, T. Komputer, and P. B. Indonesia, “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMAN,” vol. 3, pp. 25–30, 2020, doi: 10.37600/tekinkom.v3i1.131.
A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi/article/view/5732/1938
Y. L. Nainel, E. Buulolo, and I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: PT. Pyridam Farma Tbk),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 214, 2020, doi: 10.30865/jurikom.v7i2.2097.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori dan FP-Growth sebagai Dasar Pertimbangan Penentuan Paket Sembako,” Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.
F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.
M. A. Rofiq, A. Qoiriah, S. Kom, and M. Kom, “Pengelompokan Kategori Buku Berdasarkan Judul Menggunakan Algoritma Agglomerative Hierarchical Clustering Dan K-Medoids,” J. Informatics Comput. Sci., vol. 2, no. 03, pp. 220–227, 2021.
B. Harli Trimulya Suandi As and L. Zahrotun, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN DATA RIWAYAT AKADEMIK SEBELUM KULIAH DAN DATA KELULUSAN MAHASISWA MENGGUNAKAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING (Implementation Of Data Mining In Grouping Academic History Data Before Students And Stud,” J. Teknol. Informasi, Komput. dan Apl., vol. 3, no. 1, pp. 62–71, 2021, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
E. P. Priambodo and A. Jananto, “Perbandingan Analisis Cluster Algoritma K-Means Dan AHC Dalam Perencanaan Persediaan Barang Pada Perusahaan Manufaktur,” Progresif J. Ilm. Komput., vol. 18, no. 2, p. 257, 2022, doi: 10.35889/progresif.v18i2.868.
H. D. Tampubolon, D. Gultom, L. Y. Hutabarat, F. I. R. H. Zer, and D. Hartama, “Penerapan Algoritma K-Means Untuk Mengetahui Tingkat Tindak Kejahatan Daerah Pematangsiantar,” J. Teknol. Inf., vol. 4, no. 1, pp. 146–151, 2020.
R. A. Setyawan and R. M. Fadilla, “Klasterisasi media pembelajaran daring di era pandemi COVID-19 menggunakan metode Agglomerative,” Inf. Interaktif, vol. 5, no. 3, 2020, [Online]. Available: http://www.e-journal.janabadra.ac.id/index.php/informasiinteraktif/article/view/1305%0Ahttps://www.e-journal.janabadra.ac.id/index.php/informasiinteraktif/article/download/1305/890
Marjiyono, “Penerapan Algoritma Ahc Algorithm Dalam Aplikasi Ppembagian Kelas Siswa Baru,” Semin. Nas. Teknol. Inf. dan Multimed. 2015, pp. 6–8, 2015.
T. Li, A. Rezaeipanah, and E. M. T. El Din, “An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement,” J. King Saud Univ. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022.
R. T. Adek, R. K. Dinata, and A. Ditha, “Online Newspaper Clustering in Aceh using the Agglomerative Hierarchical Clustering Method,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 1, pp. 70–75, 2022.
P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmos. Pollut. Res., vol. 11, no. 1, pp. 40–56, 2020.
C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical clustering of local updates to improve training on non-IID data,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–9.
K. Zeng, M. Ning, Y. Wang, and Y. Guo, “Hierarchical clustering with hard-batch triplet loss for person re-identification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13657–13665.
N. K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clustering,” Pros. Semin. Nas. Teknol. dan Sains, vol. 1, pp. 200–205, 2022, [Online]. Available: https://jurnal.dharmawangsa.ac.id/index.php/djtechno/article/view/966/867
B. Produktivitas, “Perbandingan algoritma k-means dengan k-medoids pada pengelompokan armada kendaraan truk berdasarkan produktivitas,” vol. 06, pp. 229–240, 2021.
D. Wahyuli, I. Parlina, A. P. Windarto, and D. Suhendro, “Mengelompokkan Garis Kemiskinan Menurut Provinsi Menggunakan Algoritma K-Medoids,” no. September, pp. 452–461, 2019.
S. R. Ningsih, I. S. Damanik, A. P. Windarto, and H. Satria, “Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi,” no. September, pp. 721–730, 2019.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisa Perbandingan Complate Linkage AHC dan K-Medoids Dalam Pengelompokkan Data Kemiskinan di Indonesia
Pages: 509−522
Copyright (c) 2023 Rifqi Habibi Sachrrial, Agus Iskandar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).