Eksperimen Pengujian Optimizer dan Fungsi Aktivasi Pada Code Clone Detection dengan Pemanfaatan Deep Neural Network (DNN)


  • Errissya Rasywir Universitas Dinamika Bangsa, Jambi, Indonesia
  • Yovi Pratama * Mail Universitas Dinamika Bangsa, Jambi, Indonesia
  • Fachruddin Fachruddin Universitas Dinamika Bangsa, Jambi, Indonesia
  • (*) Corresponding Author
Keywords: DNN; Code; PHP; Experiment; Accuracy

Abstract

The problem of similarity (similarity) of program code can be one solution to the plagiarism detection approach. Plagiarism raises a form of action and consequences of plagiarism itself if the source used is not open source. Plagiarism is an act of deception of the work of others without the knowledge of the original author, which violates a Copyright and Moral Rights. With the increasing amount of data and data complexity, deep learning provides solutions for predictive analytics, with increased processing capabilities and optimal processor utilization. Deep learning shows success and improves the classification model in this field. On the other hand, clone detection code with massive, varied and high-speed data volumes requires feature extraction. With the potential of deep learning to extract better features, deep learning techniques are suitable for code clone detection. For this reason, it is necessary to develop a clone detection code that can process data from a programming language by utilizing deep learning. Based on the results of experiments conducted on 100 PHP program code data files, experimented with several types of activation function and optimizer methods. The average value of the resulting accuracy is good. With a variety of activation functions that we use such as Relu, Linear, Sigmoid, Softmax, Tanh, Elu, Selu, Softplus, Softsign, hard, and sigmoid, as well as variations of the optimizer used are Adagrad, RMSProp, SGD, Adadelta, Adam, Adamax and Nadam , the best attribute selection is in the Selu function and the RMSProp optimizer. The number of epochs used is 1000, the number of neurons per layer is 500 and the best number of hidden layers is 10, the average accuracy is 0.900

Downloads

Download data is not yet available.

References

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner: A deep learning-based clone detection approach,” Proc. - 2017 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2017, pp. 249–260, 2017, doi: 10.1109/ICSME.2017.46.

L. Nichols, M. Emre, and B. Hardekopf, Structural and nominal cross-language clone detection, vol. 11424 LNCS, no. 2. Springer International Publishing, 2019.

Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A Systematic Review on Code Clone Detection,” IEEE Access, vol. 7, pp. 86121–86144, 2019, doi: 10.1109/ACCESS.2019.2918202.

Fachruddin, Saparudin, E. Rasywir, and Y. Pratama, “Network and layer experiment using convolutional neural network for content based image retrieval work,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 1, pp. 118–128, 2022, doi: 10.12928/TELKOMNIKA.v20i1.19759.

M. R. Borroek, E. Rasywir, Y. Pratama, Fachruddin, and M. Istoningtyas, “Analysis on Knowledge Layer Application for Knowledge Based System,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 177–182, doi: 10.1109/ICECOS.2018.8605262.

Y. Pratama and E. Rasywir, “Automatic Cost Estimation Analysis on Datawarehouse Project with Modified Analogy Based Method,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 171–176, doi: 10.1109/ICECOS.2018.8605195.

E. B. Prasetya, “Deteksi Similarity Source Code Menggunakan Metode Deteksi Abstract Syntax Tree,” in Seminar Nasional Sains dan Teknologi 2014, 2014, no. November, pp. 1–7.

K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider, “CLCDSA: Cross language code clone detection using syntactical features and API documentation,” Proc. - 2019 34th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2019, pp. 1026–1037, 2019, doi: 10.1109/ASE.2019.00099.

Y. Wu et al., “SCDetector: Software Functional Clone Detection Based on Semantic Tokens Analysis,” Proc. - 2020 35th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2020, pp. 821–833, 2020, doi: 10.1145/3324884.3416562.

A. Walker, T. Cerny, and E. Song, “Open-source tools and benchmarks for code-clone detection,” ACM SIGAPP Appl. Comput. Rev., vol. 19, no. 4, pp. 28–39, 2020, doi: 10.1145/3381307.3381310.

E. B. Prasetya and A. F. D. Jalal, “Deteksi Similarity Source Code Menggunakan Metode Deteksi Abstract Syntax Tree,” in Prosiding Semnastek, 2014, pp. 1–7.

Q. Zheng, X. Tian, M. Yang, and H. Wang, “Differential learning: A powerful tool for interactive content-based image retrieval,” Eng. Lett., vol. 27, no. 1, pp. 202–215, 2019.

J. Zeng, K. Ben, X. Li, and X. Zhang, “Fast code clone detection based on weighted recursive autoencoders,” IEEE Access, vol. 7, pp. 125062–125078, 2019, doi: 10.1109/ACCESS.2019.2938825.

M. A. Nishi and K. Damevski, “Scalable code clone detection and search based on adaptive prefix filtering,” J. Syst. Softw., vol. 137, pp. 130–142, 2018, doi: 10.1016/j.jss.2017.11.039.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning code fragments for code clone detection,” in Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016, pp. 87–98, doi: 10.1145/2970276.2970326.

P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya, “FOCAN: A Fog-supported smart city network architecture for management of applications in the Internet of Everything environments,” J. Parallel Distrib. Comput., 2018, doi: 10.1016/j.jpdc.2018.07.003.

M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. S. Oh, “Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624–635, 2018, doi: 10.1109/JIOT.2017.2712560.

J. You, W. Liu, and J. Lee, “A DNN-based semantic segmentation for detecting weed and crop,” Comput. Electron. Agric., vol. 178, no. September, p. 105750, 2020, doi: 10.1016/j.compag.2020.105750.

A. B. Adege and H. Lin, “applied sciences Applying Deep Neural Network ( DNN ) for Robust Indoor Localization in Multi-Building Environment,” applsci, vol. 8, pp. 1–14, 2018, doi: 10.3390/app8071062.

J. Huang, Y. F. Li, and M. Xie, “An empirical analysis of data preprocessing for machine learning-based software cost estimation,” Inf. Softw. Technol., vol. 67, pp. 108–127, 2015, doi: 10.1016/j.infsof.2015.07.004.

H. H. Wei and M. Li, “Supervised deep features for Software functional clone detection by exploiting lexical and syntactical information in source code,” IJCAI Int. Jt. Conf. Artif. Intell., pp. 3034–3040, 2017.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Eksperimen Pengujian Optimizer dan Fungsi Aktivasi Pada Code Clone Detection dengan Pemanfaatan Deep Neural Network (DNN)

Dimensions Badge
Article History
Submitted: 2022-06-28
Published: 2022-09-19
Abstract View: 607 times
PDF Download: 514 times
How to Cite
Rasywir, E., Pratama, Y., & Fachruddin, F. (2022). Eksperimen Pengujian Optimizer dan Fungsi Aktivasi Pada Code Clone Detection dengan Pemanfaatan Deep Neural Network (DNN). Building of Informatics, Technology and Science (BITS), 4(2), 405-412. https://doi.org/10.47065/bits.v4i2.1776
Section
Articles

Most read articles by the same author(s)

1 2 > >>