Penerapan Algoritma K-Means Pada Penyebaran Covid-19 Di Provinsi Jambi
Abstract
The purpose of this study using the K-Means Cluster method is to determine the level of distribution of Covid-19 cases in the high, medium, and low categories in each region in Jambi Province. There are several aspects that can be measured such as population, population density, positive cases infected with Covid-19, recovered patients, and patients who died. The data collection method used is the documentation method in the form of secondary data obtained from the Jambi Provincial Government website. The data used were positive, recovered, and died and were analyzed using the WEKA application. From the results of research with the K-Means method using 3 clusters. Cluster 0 is a cluster with a high level of distribution category, which is in the city of Jambi. Cluster 1 is a cluster with a medium level distribution category consisting of Batanghari, Merangin, Muaro Jambi, Tanjab Timur. Cluster 2 is a cluster with a low-level distribution category consisting of Bungo, Kerinci, Sarolangun, Sungai Penuh, Tanjab Barat, Tebo.
Downloads
References
Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Sistem Pakar Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani Berbasis Web,” J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1225–1234, 2020, doi: 10.30865/mib.v4i4.2521.
E. Rasywir, R. Sinaga, and Y. Pratama, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network ( CNN ),” J. Paradig. UBSI, vol. 22, no. 2, pp. 117–123, 2020.
F. Fachruddin, E. Rasywir, Hendrawan, Y. Pratama, D. Kisbianty, and M. R. Borroek, “Real Time Detection on Face Side Image with Ear Biometric Imaging Using Integral Image and Haar- Like Feature,” 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 165–170, 2018.
A. R. Setiawan, “Lembar Kegiatan Literasi Saintifik untuk Pembelajaran Jarak Jauh Topik Penyakit Coronavirus 2019 (COVID-19),” Edukatif J. Ilmu Pendidik., vol. 2, no. 1, pp. 28–37, 2020, doi: 10.31004/edukatif.v2i1.80.
N. Dwitri, J. A. Tampubolon, S. Prayoga, F. Ilmi Zer, and D. Hartama, “Penerapan Algoritma K-Means Dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 Di Indonesia,” Jti (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 101–105, 2020.
H. Prastiwi, J. Pricilia, and E. Raswir, “Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),” J. Inform. Dan Rekayasa Komput., vol. 1, no. April, pp. 141–148, 2022.
Dodo Zaenal Abidin, S. Nurmaini, R. F. Malik, Jasmir, E. Rasywir, and Y. Pratama, “A Model of Preprocessing For Social Media Data Extraction,” in 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 2019, vol. 1, no. 1, pp. 1346–1358, doi: 10.1109/JPROC.2015.2447016.
K. Celikmih, O. Inan, and H. Uguz, “Failure Prediction of Aircraft Equipment Using Machine Learning with a Hybrid Data Preparation Method,” Sci. Program., vol. 2020, pp. 1–10, 2020, doi: 10.1155/2020/8616039.
H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan,” JEPIN, vol. 5, no. 1, pp. 62–66, 2019.
E. Rasywir, Y. Pratama, H. Hendrawan, and M. Istoningtyas, “Removal of Modulo as Hashing Modification Process in Essay Scoring System Using Rabin-Karp,” 2018 Int. Conf. Electr. Eng. Comput. Sci., pp. 159–164, 2018.
Y. Pratama and E. Rasywir, “Automatic Cost Estimation Analysis on Datawarehouse Project with Modified Analogy Based Method,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 171–176, doi: 10.1109/ICECOS.2018.8605195.
H. Hendrawan, A. Haris, E. Rasywir, and Y. Pratama, “Diagnosis Penyakit Tanaman Karet dengan Metode Fuzzy Mamdani,” J. Paradig. UBSI, vol. 22, no. 2, pp. 132–138, 2020.
M. R. Borroek, E. Rasywir, Y. Pratama, Fachruddin, and M. Istoningtyas, “Analysis on Knowledge Layer Application for Knowledge Based System,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, pp. 177–182, doi: 10.1109/ICECOS.2018.8605262.
L. Buch and A. Andrzejak, “Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection,” SANER 2019 - Proc. 2019 IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering, pp. 95–104, 2019, doi: 10.1109/SANER.2019.8668039.
Fachruddin, Saparudin, E. Rasywir, and Y. Pratama, “Network and layer experiment using convolutional neural network for content based image retrieval work,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 20, no. 1, pp. 118–128, 2022, doi: 10.12928/TELKOMNIKA.v20i1.19759.
B. Demir and L. Bruzzone, “A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval,” Geosci. Remote Sensing, IEEE Trans., vol. 53, no. 5, pp. 2323–2334, 2015, doi: 10.1109/TGRS.2014.2358804.
W. Xu, S. Wu, M. J. Er, C. Zheng, and Y. Qiu, “New non-negative sparse feature learning approach for content-based image retrieval,” IET Image Process., vol. 11, no. 9, 2017, doi: 10.1049/iet-ipr.2016.0726.
P. Alkhairi and A. P. Windarto, “Penerapan K-Means Cluster pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara,” Semin. Nas. Teknol. Komput. Sains, pp. 762–767, 2019.
F. Fachruddin and Y. Pratama, “Eksperimen Seleksi Fitur Pada Parameter Proyek Untuk Software Effort Estimation dengan K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 2, no. 2, pp. 53–62, 2017, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/510.
V. N. Sari, L. Y. Astri, and E. Rasywir, “Analisis Dan Penerapan Algoritma Naive Bayes Untuk Evaluasi,” J. Ilm. Mhs. Tek. Inform., vol. 2, no. 1, pp. 53–68, 2020.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Pada Penyebaran Covid-19 Di Provinsi Jambi
Pages: 229-237
Copyright (c) 2022 Reza Pahlevi, Muhammad Wahyu Prayogi, Errissya Rasywir, Yovi Pratama

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).