Peningkatan Kualitas Citra Termal Menggunakan Metode Blind Deconvolution


  • Mita Erlida Sipahutar * Mail Universitas Budi Darma, Medan, Indonesia
  • Sinar Sinurat Universitas Budi Darma, Medan, Indonesia
  • Imam Saputra Universitas Budi Darma, Medan, Indonesia
  • (*) Corresponding Author
Keywords: Improvement; Quality; Image; Thermal; Blind Deconvolution Method

Abstract

Temperature is a quantity that indicates the degree of heat of an object. The higher the temperature of an object, the hotter the object. Thermal imagery is an image created with thermal infrared spectrum that utilizes the temperature of an object. Sensing on this spectrum is based on differences in the temperature of the object and its emission power in the image which is reflected by the difference in hue or color. The sensor used in thermal images is noncamera based on scanning. In thermal imagery, there is a problem, namely blurred / blurred images that make it difficult to obtain information about objects. Blurred thermal images are caused by hot spots or rising temperatures. Thermal images often experience problems due to the large amount of diffraction fog in thermal imaging caused by the refractive index decreases as the wavelength increases. Blind deconvolution is a method that can be used to restore images that experience blur effects without having to know the value of the Point Spread Function (PSF). The process of improving the quality of thermal images is carried out using the blind deconvolution method which consists of 3 stages, namely finding the kernel value, looking for the convolution and estimation values ( ). Blind deconvolution method can be applied in improving the quality of thermal images by reducing the blur effect found in the image

Downloads

Download data is not yet available.

References

Abdul Kadir. 2014. Dasar Pengolahan Citra dengan DELPHI. Yogyakarta: Andi Publisher.

Al-Ameen, Zohair. 2012. “A Comprehensive Study on Fast Image Deblurring Techniques”. International Journal of Avanced Scienxe and Technology. Vol. 44. No 1. Hal 1-10.

Al-Amri, Salem Saleh. 2010. “Deblured Gaussian Blurred Images”. Journal of Computing. Vol. 2. No 4. Hal 33-35.

Feriza A Irawan. 2012. Buku Pintar Pemrograman MATLAB. Yogyakarta: MediaKom.

Ramadevi, Y, et al. 2010. “Segmentation anda Object Recognition Using Edge Detection Techniques”. International Journal of Computer Science and Information Technology. Vol. 2. No 6. Hal 153-161.

Rinaldi Munir. 2004. Pengolahan Citra Digital dengan Pendekatan Algoritmik. Bandung: PenerbitInformatika.

Sharma, Pratibha. 2014. “Blind Deconvolution Deblurring Technique In Image Processing”. International Journal for Research in Applied Science and Engineering Technology. Vol. 2. No 9. Hal 355-359.

Thakur, Madri. 2014. “Image Restoration Based On Deconvolution by Richardson Lucy Algorithm”. International Journal of Engineering Trends and Technology. Vol. 14. No 4. Hal 161-165.

T. Sutoyo. et al. 2009. Teori Pengolahan Citra Digital. Yogyakarta: Penerbit ANDI.

The Matworks, Inc. 2004, “Understanding Deblurring”.

Yeka Hendriyani. 2012. “Restorasi Citra Kabur (Blur) Menggunakan

Algoritma Lucy-Richardson”. Jurnal Teknologi Informasi dan Pendidikan. Vol. 5. No 2. Hal 166174


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Peningkatan Kualitas Citra Termal Menggunakan Metode Blind Deconvolution

Dimensions Badge
Article History
Submitted: 2020-04-14
Published: 2021-09-29
Abstract View: 305 times
PDF Download: 453 times
How to Cite
Sipahutar, M., Sinurat, S., & Saputra, I. (2021). Peningkatan Kualitas Citra Termal Menggunakan Metode Blind Deconvolution. Building of Informatics, Technology and Science (BITS), 3(2), 79-87. https://doi.org/10.47065/bits.v3i2.133
Section
Articles

Most read articles by the same author(s)