Implementasi Metode Convolutional Neural Network Untuk Identifikasi Pola Aksara Batak
Abstract
The pattern of the Batak script is the writings of the Batak language which is an important part in the introduction of the Batak script. The Batak script consists of five major dialects, namely Angkola-Mandailing, Karo, Pakpak-Dairi, Simalungun, and Toba dialects. The writings in the Batak script, especially the Toba Batak script, are of course very difficult to understand and study by the current millennial generation. This is due to the lack of people who are experts in the field of Batak script to teach about the Batak script, especially the Toba Batak script. Convolutional neural network (CNN) is part of an artificial neural network that is used as a place to process data in two-dimensional form (multi-layer perceptron), namely sound and images or in other words as a form of pattern recognition. Convolutional neural network (CNN) is used in Batak script patterns as a tool for pattern recognition that will help recognize Batak script patterns into computer form using MatLab so that it is more effective and efficient to learn. Thus, the use of the Convolutional neural network (CNN) method in the Batak script will again bring up a sense of curiosity to learn the Batak script, especially the Toba Batak script. And also with the Convolutional Neural Network (CNN) method in Batak script, it will make the identification process easier.
References
[2] O. N. Shpakov and G. V. Bogomolov, “Technogenic activity of man and local sources of environmental pollution,” Stud. Environ. Sci., vol. 17, no. C, pp. 329–332, 1981, doi: 10.1016/S0166-1116(08)71924-1.
[3] J. Utama, “Akuisisi Citra Digital menggunakan Pemrograman MATLAB,” Maj. Unikom, vol. 9, no. 1, pp. 71–80, 2011.
[4] Widyatama &Suprapty, “Bab II Landasan Teori,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2018, doi: 10.1017/CBO9781107415324.004.
[5] A. K. Tarigan, S. D. Nasution, and A. Karim, “Aplikasi Pembelajaran Citra Dengan Menggunakan Metode Computer Assisted Instruction ( Cai ),” vol. 3, no. 4, pp. 1–4, 2016.
[6] N.Nafi’iyah-S.Mujilahwati, Buku Ajar Citra Binarisasi Dan Enhacement. Yogyakarta, 2018.
[7] Darma Putra, Pengolahan Citra Digital. Yogyakarta: ANDI, 2010.
[8] P. I. Hidayati et al., “No Title.”
[9] L. De Russis et al., “OpenCV Java Tutorials Documentation,” Semin. Nas. Teknol. Inf. Komun. Terap. 2011, vol. 1, no. 1, pp. 187–198, 2011, [Online]. Available: http://repo.pens.ac.id/1324/1/Paper_TA_MBAH.pdf.
[10] A. B. S and H. Maulana, “Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis ( PCA ),” vol. 9, no. 2, pp. 166–175, 2016.
[11] K. Z. Transform and D. A. N. Bray, “DISTANCE UNTUK PENGENALAN POLA HURUF,” pp. 153–159.
[12] U. Catur and D. Yudhatama, “IDENTIFIKASI LAHAN TAMBANG TIMAH MENGGUNAKAN METODE KLASIFIKASI TERBIMBING MAXIMUM LIKELIHOOD PADA CITRA LANDSAT 8 ( Identification of Tin Mining Area Using Maximum Likelihood Supervised Classification on Landsat 8 Image ),” vol. 8, 2015.
[13] F. Muhlis, Aplikasi Data Penginderaan Jauh Untuk Pengelolaan Sumber Daya Alam Dan Lingkungan. Pasuruan, Jawa Timur: Qiara Media, 2020.
[14] M. Evi, D. I. P. Rovinsi, and J. A. W. A. B. Arat, “E STIMASI P ERUBAHAN L AHAN S AWAH DENGAN K LASIFIKASI T IDAK T ERBIMBING C ITRA,” vol. 11, no. 2, pp. 55–66, 2017.
[15] F. Hadi Amalia, T. Agung Budi, and K. N. Ramadhani, “Pengenalan Angka Tulisan Tangan Dengan Penerapan Freeman Chain Code yang Dimodifikasi,” E-Proceeding Eng., vol. 2, no. 2, pp. 6101–6109, 2015.
[16] R. Gunawan, S. Suwarno, and W. Hapsari, “PENERAPAN OPTICAL CHARACTER RECOGNITION ( OCR ) UNTUK PEMBACAAN METERAN LISTRIK PLN,” vol. 10, no. 2, pp. 127–134, 2014.
[17] M. E. R. Bezerra and A. L. I. de Oliveira, “Optical character recognition,” Digit. Doc. Anal. Process., vol. 1, no. 1, pp. 207–230, 2013.
[18] D. H. Tanjung, “Jaringan Saraf Tiruan dengan Backpropagation untuk Memprediksi Penyakit Asma,” Creat. Inf. Technol. J., vol. 2, no. 1, p. 28, 2015, doi: 10.24076/citec.2014v2i1.35.
[19] E. Hartato, D. Sitorus, and A. Wanto, “Analisis Jaringan Saraf Tiruan Untuk Prediksi Luas Panen Biofarmaka Di Indonesia,” SemanTIK, vol. 4, no. 1, pp. 49–56, 2018.
[20] S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018, doi: 10.32528/JUSTINDO.V3I2.2254.
[21] V. Maha, P. Salawazo, D. Putra, J. Gea, F. Teknologi, and U. P. Indonesia, “Implementasi Metode Convolutional Neural Network ( CNN ) Pada Peneganalan Objek Video Cctv,” J. Mantik Penusa, vol. 3, no. 1, pp. 74–79, 2019.
[22] G. Wicaksono, S. Andryana, and B. -, “Aplikasi Pendeteksi Penyakit Pada Daun Tanaman Apel Dengan Metode Convolutional Neural Network,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 1, p. 9, 2020, doi: 10.31328/jointecs.v5i1.1221.
[23] M. T. Stefanus Christian Adi Pradhana, Untari Novia Wisesty S.T.,M.T., Febryanthi Sthevanie S.T., “Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng., vol. 7, no. 1, pp. 2558–2567, 2020.
[24] J. Sitorus, “Perancangan Aplikasi Pengenalan Pola Huruf Aksara Batak Toba Menerapkan Metode Direction Feature Extraction ( Dfe ),” JURIKOM (Jurnal Ris. Komputer), vol. 2, no. 6, pp. 48–55, 2015.
[25] C. Nasoichah, “Aksara Batak Dalam Kebhinnekaan Nusantara,” Kebudayaan, vol. 11, no. 1, p. 1, 2018, doi: 10.24832/jk.v11i1.13.
[26] R. A.S-M.Salahuddin, rekayasa perankat lunak dan implementasinya. Yogyakarta: Informatika, 2011.
[27] A.Nugroho, Rekayasa Perangkat Lunak Menggunakan UML dan Java. Yogyakarta: ANDI, 2009.
[28] J. HM, Rekayasa Perangkat Lunak dan Implementasinya. Yogyakarta: ANDI, 2005.
[29] J. Ilmiah and F. Exacta, “Identifikasi objek berdasarkan citra warna menggunakan matlab,” vol. 4, no. 2, pp. 181–190, 2011.
[30] B. Cahyono, “Penggunaan Software Matrix Laboratory (Matlab) Dalam Pembelajaran Aljabar Linier,” Phenom. J. Pendidik. MIPA, vol. 3, no. 1, p. 45, 2016, doi: 10.21580/phen.2013.3.1.174.
[31] F. Alfiyan, “Pengaruh Perbedaan Kernel Edge Detection Kirsch Pada Sketching Citra Digital Dengan Bahasa Pemrograman Matlab,” J. Teknol. Inf. RESPATI, vol. XIII, no. November, pp. 1–8, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Metode Convolutional Neural Network Untuk Identifikasi Pola Aksara Batak
Pages: 49-53
Copyright (c) 2022 Tumiar Butar - Butar, Berto Nadeak, Imam Saputra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).