Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur


  • Desi Nurnaningsih Universitas Muhammadiyah Tangerang, Tangerang, Indonesia
  • Dedy Alamsyah Universitas Muhammadiyah Tangerang, Tangerang, Indonesia
  • Arief Herdiansah Universitas Muhammadiyah Tangerang, Tangerang, Indonesia
  • Alfry Aristo Jansen Sinlae * Mail Universitas Katolik Widya Mandira, Kupang, Indonesia
  • (*) Corresponding Author
Keywords: Euclidean Distance; Eccentricity; Gray Level Co-Occurrence Matrix; Metrics; Rhizome Plant

Abstract

In the midst of the Covid-19 pandemic, increasing the body's immunity is very important. Some experts suggest consuming medicinal plants or herbs to boost immunity. In addition to being used as a cooking spice, this rhizome type plant turns out to have properties and benefits for health, especially to increase immunity. However, many people do not know and it is difficult to distinguish the type of rhizome plant. This type of rhizome plant can be identified based on the characteristics seen from the shape and texture. However, most people judge the type of rhizome has a shape that is difficult to distinguish. This study aims to determine the type of medicinal plant rhizome with Euclidean distance and extraction of shape and texture. Extraction of shape features using metric and eccentricity parameters. This parameter is considered to be able to recognize shape objects and can distinguish them from other objects. Meanwhile, texture feature extraction uses Gray Level Co-occurence Matrix (GLCM) with contrast, correlation, energy, and homogeneity parameters. For the identification process, Euclidean distance is used which serves to represent the level of two images that consider the distance value from Euclidean. From the results of the evaluation using a confusion matrix by calculating precision, recall and accuracy, it gets a precision value of 83%, recal 87% and an accuracy of 85%. These results indicate that the Euclidean distance and extraction of shape and texture features can identify the object image of medicinal plants with rhizome types well

Downloads

Download data is not yet available.

References

D. Khadka et al., “The use of medicinal plants to prevent COVID-19 in Nepal,” J. Ethnobiol. Ethnomed., vol. 17, no. 26, pp. 1–17, 2021.

S. L. Lee and C. C. Tseng, “Digital Image Sharpening Using Integral Image Representation and Laplacian Operator,” 2018 IEEE Int. Conf. Consum. Electron. ICCE-TW 2018, pp. 31–32, 2018.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS) Identification, 2021, pp. 12–17.

A. Mulyanto, R. I. Borman, P. Prasetyawana, and A. Sumarudin, “2D Lidar and Camera Fusion for Object Detection and Object Distance Measurement of ADAS Using Robotic Operating System ( ROS ),” JOIV Int. J. Informatics Vis., vol. 4, no. 4, pp. 231–236, 2020.

R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),” J. Inform. J. Pengemb. IT, vol. 03, no. 1, pp. 103–108, 2018.

S. Pervaiz, Z. Ul-qayyum, W. H. Bangyal, L. Gao, and J. Ahmad, “Review Article A Systematic Literature Review on Particle Swarm Optimization Techniques for Medical Diseases Detection,” Comput. Math. Methods Med., vol. 2021, pp. 1–10, 2021.

P. Prasetyawan, I. Ahmad, R. I. Borman, A. Ardiansyah, Y. A. Pahlevi, and D. E. Kurniawan, “Classification of the Period Undergraduate Study Using Back-propagation Neural Network,” in Proceedings of the 2018 International Conference on Applied Engineering, ICAE 2018, 2018.

A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-Nn Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon,” Transmisi, vol. 22, no. 4, pp. 123–129, 2020.

R. Rizaldi, A. Kurniawati, and C. V. Angkoso, “Implementasi Metode Euclidean Distance untuk Rekomendasi Ukuran Pakaian pada Aplikasi Ruang Ganti Virtual,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 129, 2018.

M. Jannah and N. Humaira, “Implementasi Metode Euclidean Distance Untuk Ekstraksi Fitur Jarak Pada Citra Skeleton,” J. Ilm. Inform. Komput., vol. 24, no. 2, pp. 134–139, 2019.

I. H. Qasim and A. B. W. Putra, “Penggunaan Metode Euclidean Distance, Coefficient Correlation dan Center of Gravity Untuk Pembangunan Prototype Citra Tanda Tangan,” in PROSIDING SNSebatik 2017 (Seminar Nasional Serba Informatika 2017), 2017, vol. 1, no. 1, pp. 52–58.

D. Wahiddin, “Klasifikasi Kadar Hidrasi Tubuh Berdasarkan Warna Urine dengan Metode Ekstraksi Fitur Citra dan Euclidean Distance,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 5, no. 1, pp. 16–20, 2020.

Y. Chen, L. Song, Y. Liu, L. Yang, and D. Li, “A Review of the Artificial Neural Network Models for Water Quality Prediction,” Appl. Sci., vol. 10, no. 5776, pp. 1–49, 2020.

A. S. Sinaga and T. Informatika, “Segmentasi Ruang Warna L * a * b,” J. Mantik Penusa, vol. 3, no. 1, pp. 43–46, 2019.

D. J. Bora, A. K. Gupta, and F. A. Khan, “Comparing the Performance of L * A * B * and HSV Color Spaces with Respect to Color Image Segmentation,” Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 2, pp. 192–203, 2015.

A. Atina, “Segmentasi Citra Paru Menggunakan Metode k-Means Clustering,” J. Pendidik. Fis. dan Keilmuan(JPFK), vol. 3, no. 2, pp. 57–65, 2017.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50.

R. I. Borman, B. Priopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo),” in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2017, no. September, pp. 1–4.

M. F. Arifin and D. Fitrianah, “Penerapan Algoritma Klasifikasi C4.5 Dalam Rekomendasi Penerimaan Mitra Penjualan Studi Kasus: PT Atria Artha Persada,” InComTech, vol. 8, no. 2, pp. 87–102, 2018.

R. I. Borman, R. Napianto, P. Nurlandari, and Z. Abidin, “Implementasi Certainty Factor Dalam Mengatasi Ketidakpastian Pada Sistem Pakar Diagnosa Penyakit Kuda Laut,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. VII, no. 1, pp. 1–8, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur

Article History
Submitted: 2021-12-12
Published: 2021-12-31
Abstract View: 18 times
PDF Download: 8 times
How to Cite
Nurnaningsih, D., Alamsyah, D., Herdiansah, A., & Sinlae, A. A. J. (2021). Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur. Building of Informatics, Technology and Science (BITS), 3(3), 171-178. https://doi.org/10.47065/bits.v3i3.1019
Section
Articles