Penerapan Algoritma K-Means Dalam Pengelompokan Rasio Angka Partisipasi Kasar di Tingkat Pendidikan Perguruan Tinggi Menurut Provinsi


  • Fernandi Simanjorang * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Riki Winanjaya STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Fitri Rizki STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • (*) Corresponding Author
Keywords: Gross Participation Rate of Education; K-Means; Cluster

Abstract

The Ratio of Gross Participation Rate of Education is a very important role holder in the development of the nation and state, because that's where the intelligence and ability and even the character of the nation in the future is determined by education at this time. This study discusses the grouping of the number of ratios of gross participation rates by province in Indonesia. The method used is datamining with the K-means clustering algorithm. Using this method the data obtained can be grouped into 3 clusters. This study uses secondary data that is data obtained through intermediary media recorded on the website of the central statistics agency with the url address: http://www.bps.go.id. The results obtained in this study are the grouping of the ratio of gross participation rates of education grouped into 3 clusters, namely the highest cluster and the lowest cluster. In this study is expected to provide input to the relevant government, in order to pay more attention to the provinces that are included in the lowest cluster to overcome the level of quality of universities

Downloads

Download data is not yet available.

References

Istiqomah Anny, Sukidin, And S. Pudjo, “Analisis Partisipasi Pendidikan Pada Masyarakat Miskin Dusun Gumuk Limo Desa Nogosari Kecamatan Rambipuji Kabupaten Jember,” J. Pendidik. Ekon., Vol. 12, Pp. 227–235, 2018, Doi: 10.19184/Jpe.V12i2.8553.

T. Imandasari, E. Irawan, A. P. Windarto, And A. Wanto, “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air,” Semin. Nas. Ris. Inf. Sci., 2019, Doi: 10.30645/Senaris.V1i0.81.

M. A. Amri, A. P. Windarto, A. Wanto, I. S. Damanik, And S. Informasi, “Analisis Metode K-Means Pada Pengelompokan Perguruan Tinggi,” Vol. 3, Pp. 674–679, 2019, Doi: 10.30865/Komik.V3i1.1677.

J. P. Informatika, J. T. Hutabarat, I. Pendahuluan, A. D. Mining, And B. A. K-Means, “Penerapan Algoritma K-Means Untuk Menentukan Lokasi Promosi Produk Minuman Penurun Kolestrol Nutrive Benecol Pada Pt . Perkasa / Kalbe Nutrritionals,” Vol. 17, Pp. 465–472, 2018.

N. A. Hasibuan Et Al., “Implementasi Data Mining Untuk Pengaturan Layout,” Vol. 4, No. 4, Pp. 6–11, 2017.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., Vol. 2, No. 2, Pp. 213–219, 2017.

C. Fadlan, S. Ningsih, And A. P. Windarto, “Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” Jutim, Vol. 3, No. 1, Pp. 1–8, 2018.

M. H. Adiya And Y. Desnelita, “Jurnal Nasional Teknologi Dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada Rsud Pekanbaru,” Vol. 01, Pp. 17–24, 2019.

F. L. Sibuea, A. Sapta, S. Informasi, And S. Royal, “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering,” Vol. Iv, No. 1, 2017.

I. Parlina, A. P. Windarto, A. Wanto, And M. R. Lubis, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center Untuk Clustering Program Sdp,” Cess (Journal Comput. Eng. Syst. Sci., Vol. 3, No. 1, Pp. 87–93, 2018.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma K-Means Dalam Pengelompokan Rasio Angka Partisipasi Kasar di Tingkat Pendidikan Perguruan Tinggi Menurut Provinsi

Dimensions Badge
Article History
Submitted: 2021-12-27
Published: 2021-12-31
Abstract View: 62 times
PDF Download: 67 times
Section
Articles