Klasifikasi Jenis Jerawat pada Data Citra Jerawat Wajah Menggunakan Convolutional Neural Network


  • Chatarina Natassya Putri Institut Teknologi Adhi Tama Surabaya, Surabaya, Indonesia
  • Wafi Dzul Qornain Institut Teknologi Adhi Tama Surabaya, Surabaya, Indonesia
  • Fakhirah Bamahri Institut Teknologi Adhi Tama Surabaya, Surabaya, Indonesia
  • Gusti Eka Yuliastuti * Mail Institut Teknologi Adhi Tama Surabaya, Surabaya, Indonesia
  • Muchamad Kurniawan Institut Teknologi Adhi Tama Surabaya, Surabaya, Indonesia
  • (*) Corresponding Author
Keywords: Acne; Classification; CNN; Adam; RMS-prop

Abstract

Acne is a condition caused by pilosebaceous inflammation which affects 85% of skin conditions in adolescents and adults. Acne has an impact on the psychological and social health of sufferers. To treat acne, it is necessary to know the right type of acne so that sufferers can treat the type of acne according to how they are treated. This research was carried out to classify the types of acne in facial acne images using the Convolutional Neural Network (CNN) method. Based on previous research, it shows that the use of CNN is considered effective and appropriate in increasing classification accuracy. This research uses a dataset of acne types from Kaggle with a total of 351 data, divided into 5 classes, namely acne fulminans, acne nodules, fungal acne, papules and pustules which will be tested using 2 different optimizers, namely Adam and RMS- prop. From the results of this test, the highest accuracy was 100% using the Adam optimizer and the RMS-prop optimizer test obtained the highest accuracy value of 80%.

Downloads

Download data is not yet available.

References

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8

Anggara, D., Suarna, N., & Wijaya, Y. A. (2023). Analisa Perbandingan Performa Optimizer Adam, Sgd, Dan Rmsprop Pada Model H5. Networking Engineering Research Operation, 8(1), 1–12.

Dhande, G., & Shaikh, Z. (2019). Analysis of Epochs in Environment based Neural Networks Speech Recognition System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 605–608. https://doi.org/10.1109/ICOEI.2019.8862728

Duru, P., & Örsal, Ö. (2021). The effect of acne on quality of life, social appearance anxiety, and use of conventional, complementary, and alternative treatments. Complementary Therapies in Medicine, 56, 102614. https://doi.org/10.1016/j.ctim.2020.102614

Hasan, I., Suprayogi, H., & Bethaningtyas, D. (n.d.). Klasifikasi Jenis Jerawat Menggunakan Convolutional Neural Networks.

Hasanah, R. L., Rianto, Y., & Riana, D. (2022). Identification of Acne Vulgaris Type in Facial Acne Images Using GLCM Feature Extraction and Extreme Learning Machine Algorithm. 15(2), 204–214. https://doi.org/10.21107/rekayasa.v15i2.141580

Kayıran, M., Karadağ, A., Alyamaç, G., Cemil, B., Demirseren, D., Demircan, Y., Aksoy, H., Kılıç, S., Yüksel, E., Kalkan, G., Aksaç, S., Kutlu, Ö., Kakşi, S., Aktürk, A., Solak, S., Yazıcı, S., Özden, H., Koska, M., Uzunçakmak, T., … Alpsoy, E. (2022). Use of complementary and alternative medicine among patients with acne vulgaris and factors perceived to trigger the disease: A multicentre cross-sectional study with 1571 patients. Indian Journal of Dermatology, 67(3), 311. https://doi.org/10.4103/ijd.ijd_745_21

Latter, G., Grice, J. E., Mohammed, Y., Roberts, M. S., & Benson, H. A. E. (2019). Targeted topical delivery of retinoids in the management of acne vulgaris: Current formulations and novel delivery systems. In Pharmaceutics (Vol. 11, Issue 10). MDPI AG. https://doi.org/10.3390/pharmaceutics11100490

Nur Cahyo, D. D., Anwar Fauzi, M., Tri Nugroho, J., & Kusrini, K. (2023). Analisis Perbandingan Optimizer pada Arsitektur NASNetMobile Convolutional Neural Network untuk Klasifikasi Ras Kucing. Jurnal Teknologi, 15(2), 171–177. https://doi.org/10.34151/jurtek.v15i2.4025

Prabowo, R., Heningtyas, Y., Yusman, machudor, Iqbal, M., & Wulansari, O. D. E. (2021). Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network. Jurnal Komputasi, 2541–0350, 88–92. https://doi.org/10.23960/komputasi.v9i2.2868

Pratikto, F. R. (2023). Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang. Jurnal Rekayasa Sistem Industri, 12(1), 1–10. https://doi.org/10.26593/jrsi.v12i1.6380.1-10

Quattrini, A., Boër, C., Leidi, T., & Paydar, R. (2022). A Deep Learning-Based Facial Acne Classification System. Clinical, Cosmetic and Investigational Dermatology, 15, 851–857. https://doi.org/10.2147/CCID.S360450

Riahi, A., & Jung, D. (2020). Acne:Advocating for holistic support. 47(1), 1–3.

Rianto, R., & Risdho Listianto, D. (2023). Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat. AITI, 20(2), 167–176. https://doi.org/10.24246/aiti.v20i2.167-176

Suharni, Susilowati, E., & Hidayat, T. M. (2022). Implementasi Model Convolutional Neural Network (Cnn) Untuk Klasifikasi Penyakit Tbc Berbasis Dekstop. UG Journal, 16(4), 1–9.

Wicaksono, R. N., Nugroho, H., & Yuliastuti, G. E. (2023). Pengenalan Pola Citra Ekspresi Wajah Manusia Menggunakan Masker Dengan Metode Convolutional Neural Network (CNN). Prosiding Seminar Nasional Sains Dan Teknologi Terapan, 1–6. http://ejurnal.itats.ac.id/sntekpan/article/view/5157%0A http://ejurnal.itats.ac.id/sntekpan/article/download/5157/3571

Windiramadhan, A. P., & Carsita, W. N. (2022). Penggunaan Complementary and Alternative Medicine (CAM) pada ODHA: Literatur Reveiw. Bima Nursing Journal, 3(2), 140. https://doi.org/10.32807/bnj.v3i2.880

Wulan, P. I. D. C., & Musdholifah, A. (2020). Klasifikasi Jenis Jerawat Menggunakan Support Vector Machine Berdasarkan Hasil Ekstraksi Tekstur Gray-Level Co-Occurrence Matrix. Universitas Gadjah Mada.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Jerawat pada Data Citra Jerawat Wajah Menggunakan Convolutional Neural Network

Dimensions Badge
Article History
Published: 2024-07-31
Abstract View: 274 times
PDF Download: 489 times
Issue
Section
Articles

Most read articles by the same author(s)