Klasifikasi Jenis Jerawat pada Data Citra Jerawat Wajah Menggunakan Convolutional Neural Network
Abstract
Acne is a condition caused by pilosebaceous inflammation which affects 85% of skin conditions in adolescents and adults. Acne has an impact on the psychological and social health of sufferers. To treat acne, it is necessary to know the right type of acne so that sufferers can treat the type of acne according to how they are treated. This research was carried out to classify the types of acne in facial acne images using the Convolutional Neural Network (CNN) method. Based on previous research, it shows that the use of CNN is considered effective and appropriate in increasing classification accuracy. This research uses a dataset of acne types from Kaggle with a total of 351 data, divided into 5 classes, namely acne fulminans, acne nodules, fungal acne, papules and pustules which will be tested using 2 different optimizers, namely Adam and RMS- prop. From the results of this test, the highest accuracy was 100% using the Adam optimizer and the RMS-prop optimizer test obtained the highest accuracy value of 80%.
Downloads
References
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
Anggara, D., Suarna, N., & Wijaya, Y. A. (2023). Analisa Perbandingan Performa Optimizer Adam, Sgd, Dan Rmsprop Pada Model H5. Networking Engineering Research Operation, 8(1), 1–12.
Dhande, G., & Shaikh, Z. (2019). Analysis of Epochs in Environment based Neural Networks Speech Recognition System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 605–608. https://doi.org/10.1109/ICOEI.2019.8862728
Duru, P., & Örsal, Ö. (2021). The effect of acne on quality of life, social appearance anxiety, and use of conventional, complementary, and alternative treatments. Complementary Therapies in Medicine, 56, 102614. https://doi.org/10.1016/j.ctim.2020.102614
Hasan, I., Suprayogi, H., & Bethaningtyas, D. (n.d.). Klasifikasi Jenis Jerawat Menggunakan Convolutional Neural Networks.
Hasanah, R. L., Rianto, Y., & Riana, D. (2022). Identification of Acne Vulgaris Type in Facial Acne Images Using GLCM Feature Extraction and Extreme Learning Machine Algorithm. 15(2), 204–214. https://doi.org/10.21107/rekayasa.v15i2.141580
Kayıran, M., Karadağ, A., Alyamaç, G., Cemil, B., Demirseren, D., Demircan, Y., Aksoy, H., Kılıç, S., Yüksel, E., Kalkan, G., Aksaç, S., Kutlu, Ö., Kakşi, S., Aktürk, A., Solak, S., Yazıcı, S., Özden, H., Koska, M., Uzunçakmak, T., … Alpsoy, E. (2022). Use of complementary and alternative medicine among patients with acne vulgaris and factors perceived to trigger the disease: A multicentre cross-sectional study with 1571 patients. Indian Journal of Dermatology, 67(3), 311. https://doi.org/10.4103/ijd.ijd_745_21
Latter, G., Grice, J. E., Mohammed, Y., Roberts, M. S., & Benson, H. A. E. (2019). Targeted topical delivery of retinoids in the management of acne vulgaris: Current formulations and novel delivery systems. In Pharmaceutics (Vol. 11, Issue 10). MDPI AG. https://doi.org/10.3390/pharmaceutics11100490
Nur Cahyo, D. D., Anwar Fauzi, M., Tri Nugroho, J., & Kusrini, K. (2023). Analisis Perbandingan Optimizer pada Arsitektur NASNetMobile Convolutional Neural Network untuk Klasifikasi Ras Kucing. Jurnal Teknologi, 15(2), 171–177. https://doi.org/10.34151/jurtek.v15i2.4025
Prabowo, R., Heningtyas, Y., Yusman, machudor, Iqbal, M., & Wulansari, O. D. E. (2021). Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network. Jurnal Komputasi, 2541–0350, 88–92. https://doi.org/10.23960/komputasi.v9i2.2868
Pratikto, F. R. (2023). Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang. Jurnal Rekayasa Sistem Industri, 12(1), 1–10. https://doi.org/10.26593/jrsi.v12i1.6380.1-10
Quattrini, A., Boër, C., Leidi, T., & Paydar, R. (2022). A Deep Learning-Based Facial Acne Classification System. Clinical, Cosmetic and Investigational Dermatology, 15, 851–857. https://doi.org/10.2147/CCID.S360450
Riahi, A., & Jung, D. (2020). Acne:Advocating for holistic support. 47(1), 1–3.
Rianto, R., & Risdho Listianto, D. (2023). Convolutional Neural Network untuk mengklasifikasi tingkat keparahan jerawat. AITI, 20(2), 167–176. https://doi.org/10.24246/aiti.v20i2.167-176
Suharni, Susilowati, E., & Hidayat, T. M. (2022). Implementasi Model Convolutional Neural Network (Cnn) Untuk Klasifikasi Penyakit Tbc Berbasis Dekstop. UG Journal, 16(4), 1–9.
Wicaksono, R. N., Nugroho, H., & Yuliastuti, G. E. (2023). Pengenalan Pola Citra Ekspresi Wajah Manusia Menggunakan Masker Dengan Metode Convolutional Neural Network (CNN). Prosiding Seminar Nasional Sains Dan Teknologi Terapan, 1–6. http://ejurnal.itats.ac.id/sntekpan/article/view/5157%0A http://ejurnal.itats.ac.id/sntekpan/article/download/5157/3571
Windiramadhan, A. P., & Carsita, W. N. (2022). Penggunaan Complementary and Alternative Medicine (CAM) pada ODHA: Literatur Reveiw. Bima Nursing Journal, 3(2), 140. https://doi.org/10.32807/bnj.v3i2.880
Wulan, P. I. D. C., & Musdholifah, A. (2020). Klasifikasi Jenis Jerawat Menggunakan Support Vector Machine Berdasarkan Hasil Ekstraksi Tekstur Gray-Level Co-Occurrence Matrix. Universitas Gadjah Mada.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Jenis Jerawat pada Data Citra Jerawat Wajah Menggunakan Convolutional Neural Network
Pages: 172-181
Copyright (c) 2024 Chatarina Natassya Putri, Wafi Dzul Qornain, Fakhirah Bamahri, Gusti Eka Yuliastuti, Muchamad Kurniawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).